Skip to main content

Advertisement

Log in

Glycation, glycolysis, and neurodegenerative diseases: Is there any connection?

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review considers the interrelation between different types of protein glycation, glycolysis, and the development of amyloid neurodegenerative diseases. The primary focus is on the role of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase in changing the concentration of carbonyl compounds – first and foremost, glyceraldehyde-3-phosphate and methylglyoxal. It has been suggested that various modifications of the enzyme – from the oxidation of the sulfhydryl groups of the active site to glycation with sugars – can lead to its inactivation, which causes a direct increase in glyceraldehyde-3-phosphate concentration and an indirect increase in the content of other aldehydes. This “primary inactivation” of glyceraldehyde-3-phosphate dehydrogenase promotes its glycation with aldehydes, including its own substrate, and a further irreversible decrease in its activity. Such a cycle can lead to numerous consequences – from the induction of apoptosis, which is activated by modified forms of the enzyme, to glycation of amyloidogenic proteins by glycolytic aldehydes. Of particular importance during the inhibition of glyceraldehyde-3-phosphate dehydrogenase is an increase in the content of the glycating compound methylglyoxal, which is much more active than reducing sugars (glucose, fructose, and others). In addition, methylglyoxal is formed by two pathways – in the cascade of reactions during glycation and from glycolytic aldehydes. The ability of methylglyoxal to glycate proteins makes it the main participant in this protein modification. We consider the effect of glycation on the pathological transformation of amyloidogenic proteins and peptides – β-amyloid peptide, α-synuclein, and prions. Our primary focus is on the glycation of monomeric forms of these proteins with methylglyoxal, although most works are dedicated to the analysis of the presence of “advanced glycation end products” in the already formed aggregates and fibrils of amyloid proteins. In our opinion, the modification of aggregates and fibrils is secondary in nature and does not play an important role in the development of neurodegenerative diseases. The glycation of amyloid proteins with carbonyl compounds can be one of the triggers of their transformation into toxic forms. The possible role of glycation of amyloidogenic proteins in the prevention of their modification by ubiquitin and the SUMO proteins due to a disruption of their degradation is separately considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, J., Liu, D., Sun, L., Lu, Y., and Zhang, Z. (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective, J. Neurol. Sci., 317, 1–5.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, Y., and Song, W. (2013) Molecular links between Alzheimer’s disease and diabetes mellitus, Neuroscience, 250, 140–150.

    Article  CAS  PubMed  Google Scholar 

  3. Muronetz, V. I., Barinova, K. V., Stroylova, Y. Y., Semenyuk, P. I., and Schmalhausen, E. V. (2017) Glyceraldehyde-3-phosphate dehydrogenase: aggregation mechanisms and impact on amyloid neurodegenerative diseases, Int. J. Biol. Macromol., 100, 55–66.

    Article  CAS  PubMed  Google Scholar 

  4. Vicente Miranda, H., El-Agnaf, O. M. A., and Outeiro, T. F. (2016) Glycation in Parkinson’s disease and Alzheimer’s disease, Mov. Disord., 31, 782–790.

    Article  CAS  PubMed  Google Scholar 

  5. Adav, S. S., and Sze, S. K. (2016) Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling, Mol. Brain, 9, 92.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Verzelloni, E., Pellacani, C., Tagliazucchi, D., Tagliaferri, S., Calani, L., Costa, L. G., Brighenti, F., Borges, G., Crozier, A., Conte, A., and Del Rio, D. (2011) Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites, Mol. Nutr. Food Res., 55 (Suppl. 1), S35–43.

    Article  CAS  PubMed  Google Scholar 

  7. Swiatecka, D., Narbad, A., Ridgway, K. P., and Kostyra, H. (2011) The study on the impact of glycated pea proteins on human intestinal bacteria, Int. J. Food Microbiol., 145, 267–272.

    Article  PubMed  Google Scholar 

  8. Kellow, N. J., Coughlan, M. T., Savige, G. S., and Reid, C. M. (2014) Effect of dietary prebiotic supplementation on advanced glycation, insulin resistance and inflammatory biomarkers in adults with pre-diabetes: a study protocol for a double-blind placebo-controlled randomized crossover clinical trial, BMC Endocr. Disord., 14, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Opdenakker, G., Proost, P., and Van Damme, J. (2016) Microbiomic and posttranslational modifications as preludes to autoimmune diseases, Trends Mol. Med., 22, 746–757.

    Article  CAS  PubMed  Google Scholar 

  10. Kellow, N. J., and Coughlan, M. T. (2015) Effect of dietderived advanced glycation end products on inflammation, Nutr. Rev., 73, 737–759.

    Article  PubMed  Google Scholar 

  11. Martins, S. I., Jongen, W. M., and Van Boekel, M. A. (2001) A review of Maillard reaction in food and implications to kinetic modelling, Trends Food Sci. Technol., 11, 364–373.

    Article  Google Scholar 

  12. Zhang, Q., Ames, J. M., Smith, R. D., Baynes, J. W., and Metz, T. O. (2009) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease, J. Proteome Res., 8, 754–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shipanova, I. N., Glomb, M. A., and Nagaraj, R. H. (1997) Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct, Arch. Biochem. Biophys., 344, 29–36.

    Article  CAS  PubMed  Google Scholar 

  14. Rabbani, G., Ahmad, E., Zaidi, N., and Khan, R. H. (2011) pH-Dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white, Cell Biochem. Biophys., 61, 551–560.

    Article  CAS  PubMed  Google Scholar 

  15. Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S., and Khan, R. H. (2012) pH-Induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state, Cell Biochem. Biophys., 62, 487–499.

    Article  CAS  PubMed  Google Scholar 

  16. Vlassara, H., and Palace, M. R. (2002) Diabetes and advanced glycation end-products, J. Intern. Med., 251, 87–101.

    Article  CAS  PubMed  Google Scholar 

  17. Phillips, S. A., and Thornalley, P. J. (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal, Eur. J. Biochem., 212, 101–105.

    Article  CAS  PubMed  Google Scholar 

  18. He, R. Q., Li, Y. G., Wu, X. Q., and Li, L. (1995) Inactivation and conformation changes of the glycated and non-glycated D-glyceraldehyde-3-phosphate dehydrogenase during guanidine-HCl denaturation, Biochim. Biophys. Acta, 1253, 47–56.

    Article  PubMed  Google Scholar 

  19. He, R. Q., Yang, M. D., Zheng, X., and Zhou, J. X. (1995) Isolation and some properties of glycated D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, Biochem. J., 309 (Pt. 1), 133–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morgan, P. E., Dean, R. T., and Davies, M. J. (2002) Inactivation of cellular enzymes by carbonyls and proteinbound glycation/glycoxidation products, Arch. Biochem. Biophys., 403, 259–269.

    Article  CAS  PubMed  Google Scholar 

  21. Wentzel, P., Ejdesjo, A., and Eriksson, U. J. (2003) Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos, Diabetes, 52, 1222–1228.

    Article  CAS  PubMed  Google Scholar 

  22. Muronetz, V., Barinova, K., and Schmalhausen, E. (2016) Glycation of glyceraldehyde-3-phosphate dehydrogenase in the presence of glucose and glyceraldehyde-3-phosphate, J. Int. Soc. Antioxid. Nutr. Health, 3.

    Google Scholar 

  23. Zhao, W., Devamanoharan, P. S., and Varma, S. D. (2000) Fructose induced deactivation of antioxidant enzymes: preventive effect of pyruvate, Free Radic. Res., 33, 23–30.

    Article  CAS  PubMed  Google Scholar 

  24. Hook, D. W., and Harding, J. J. (1997) Inactivation of glyceraldehyde 3-phosphate dehydrogenase by sugars, prednisolone-21-hemisuccinate, cyanate and other small molecules, Biochim. Biophys. Acta, 1362, 232–242.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, H. J., Howell, S. K., Sanford, R. J., and Beisswenger, P. J. (2005) Methylglyoxal can modify GAPDH activity and structure, Ann. N. Y. Acad. Sci., 1043, 135–145.

    Article  CAS  PubMed  Google Scholar 

  26. Asryants, R. A., Kuzminskaya, E. V., Tishkov, V. I., Douzhenkova, I. V., and Nagradova, N. K. (1989) An examination of the role of arginine residues in the functioning of D-glyceraldehyde-3-phosphate dehydrogenase, Biochim. Biophys. Acta, 997, 159–166.

    Article  CAS  PubMed  Google Scholar 

  27. Ray, M., Basu, N., and Ray, S. (1997) Inactivation of glyceraldehyde-3-phosphate dehydrogenase of human malignant cells by methylglyoxal, Mol. Cell. Biochem., 177, 21–26.

    Article  CAS  PubMed  Google Scholar 

  28. Beisswenger, P. J., Howell, S. K., Smith, K., and Szwergold, B. S. (2003) Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes, Biochim. Biophys. Acta, 1637, 98–106.

    Article  CAS  PubMed  Google Scholar 

  29. Du, X., Matsumura, T., Edelstein, D., Rossetti, L., Zsengeller, Z., Szabo, C., and Brownlee, M. (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells, J. Clin. Invest., 112, 1049–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seidler, N. W., and Yeargans, G. S. (2002) Effects of thermal denaturation on protein glycation, Life Sci., 70, 1789–1799.

    Article  CAS  PubMed  Google Scholar 

  31. Guerrero, E., Vasudevaraju, P., Hegde, M. L., Britton, G. B., and Rao, K. S. (2013) Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease, Mol. Neurobiol., 47, 525–536.

    Article  CAS  PubMed  Google Scholar 

  32. Castellani, R., Smith, M. A., Richey, P. L., and Perry, G. (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease, Brain Res., 737, 195–200.

    Article  CAS  PubMed  Google Scholar 

  33. Munch, G., Luth, H. J., Wong, A., Arendt, T., Hirsch, E., Ravid, R., and Riederer, P. (2000) Crosslinking of alphasynuclein by advanced glycation end-products–an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat., 20, 253–257.

    Article  CAS  PubMed  Google Scholar 

  34. Dalfo, E., Portero-Otin, M., Ayala, V., Martinez, A., Pamplona, R., and Ferrer, I. (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease, J. Neuropathol. Exp. Neurol., 64, 816–830.

    Article  CAS  PubMed  Google Scholar 

  35. Padmaraju, V., Bhaskar, J. J., Prasada Rao, U. J., Salimath, P. V., and Rao, K. S. (2011) Role of advanced glycation on aggregation and DNA binding properties of α-synuclein, J. Alzheimer’s Dis., 24 (Suppl. 2), 211–221.

    CAS  Google Scholar 

  36. Shaikh, S., and Nicholson, L. F. B. (2008) Advanced glycation end products induce in vitro cross-linking of alphasynuclein and accelerate the process of intracellular inclusion body formation, J. Neurosci. Res., 86, 2071–2082.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L., Wei, Y., Wang, X., and He, R. (2010) Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products, PLoS One, 5, e9052.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee, D., Park, C. W., Paik, S. R., and Choi, K. Y. (2009) The modification of alpha-synuclein by dicarbonyl compounds inhibits its fibril-forming process, Biochim. Biophys. Acta, 1794, 421–430.

    Article  CAS  PubMed  Google Scholar 

  39. Outeiro, T. F., Putcha, P., Tetzlaff, J. E., Spoelgen, R., Koker, M., Carvalho, F., Hyman, B. T., and McLean, P. J. (2008) Formation of toxic oligomeric alpha-synuclein species in living cells, PLoS One, 3, e1867.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Winner, B., Jappelli, R., Maji, S. K., Desplats, P. A., Boyer, L., Aigner, S., Hetzer, C., Loher, T., Vilar, M., Campioni, S., Tzitzilonis, C., Soragni, A., Jessberger, S., Mira, H., Consiglio, A., Pham, E., Masliah, E., Gage, F. H., and Riek, R. (2011) In vivo demonstration that alpha-synuclein oligomers are toxic, Proc. Natl. Acad. Sci. USA, 108, 4194–4199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boyd, A. E., Lebovitz, H. E., and Feldman, J. M. (1971) Endocrine function and glucose metabolism in patients with Parkinson’s disease and their alternation by L-DOPA, J. Clin. Endocrinol. Metab., 33, 829–837.

    Article  PubMed  Google Scholar 

  42. Hu, G., Jousilahti, P., Bidel, S., Antikainen, R., and Tuomilehto, J. (2007) Type 2 diabetes and the risk of Parkinson’s disease, Diab. Care, 30, 842–847.

    Article  Google Scholar 

  43. Xu, Q., Park, Y., Huang, X., Hollenbeck, A., Blair, A., Schatzkin, A., and Chen, H. (2011) Diabetes and risk of Parkinson’s disease, Diab. Care, 34, 910–915.

    Article  Google Scholar 

  44. Arvanitakis, Z., Wilson, R. S., Bienias, J. L., and Bennett, D. A. (2007) Diabetes and parkinsonian signs in older persons, Alzheimer’s Dis. Assoc. Disord., 21, 144–149.

    Article  Google Scholar 

  45. Cereda, E., Barichella, M., Cassani, E., Caccialanza, R., and Pezzoli, G. (2012) Clinical features of Parkinson disease when onset of diabetes came first: a case-control study, Neurology, 78, 1507–1511.

    Article  CAS  PubMed  Google Scholar 

  46. Sandyk, R. (1993) The relationship between diabetes mellitus and Parkinson’s disease, Int. J. Neurosci., 69, 125–130.

    Article  CAS  PubMed  Google Scholar 

  47. Cereda, E., Barichella, M., Pedrolli, C., Klersy, C., Cassani, E., Caccialanza, R., and Pezzoli, G. (2011) Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis, Diab. Care, 34, 2614–2623.

    Article  Google Scholar 

  48. Driver, J. A., Smith, A., Buring, J. E., Gaziano, J. M., Kurth, T., and Logroscino, G. (2008) Prospective cohort study of type 2 diabetes and the risk of Parkinson’s disease, Diab. Care, 31, 2003–2005.

    Article  Google Scholar 

  49. Lu, L., Fu, D.-L., Li, H.-Q., Liu, A.-J., Li, J.-H., and Zheng, G.-Q. (2014) Diabetes and risk of Parkinson’s disease: an updated meta-analysis of case-control studies, PLoS One, 9, e85781.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ikemoto, S., Takahashi, M., Tsunoda, N., Maruyama, K., Itakura, H., and Ezaki, O. (1996) High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils, Metabolism, 45, 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  51. Morris, J. K., Bomhoff, G. L., Stanford, J. A., and Geiger, P. C. (2010) Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet, Am. J. Physiol. Regul. Integr. Comp. Physiol., 299, R1082–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi, J.-Y., Jang, E.-H., Park, C.-S., and Kang, J.-H. (2005) Enhanced susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in high-fat dietinduced obesity, Free Radic. Biol. Med., 38, 806–816.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, L., Xiong, N., Zhang, P., Chen, C., Huang, J., Zhang, G., Xu, X., Shen, Y., Lin, Z., and Wang, T. (2015) Genetic variants in GAPDH confer susceptibility to sporadic Parkinson’s disease in a Chinese Han population, PLoS One, 10, e0135425.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vitek, M. P., Bhattacharya, K., Glendening, J. M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K., and Cerami, A. (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease, Proc. Natl. Acad. Sci. USA, 91, 4766–4770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Choei, H., Sasaki, N., Takeuchi, M., Yoshida, T., Ukai, W., Yamagishi, S.-I., Kikuchi, S., and Saito, T. (2004) Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease, Acta Neuropathol. (Berl.), 108, 189–193.

    Article  CAS  Google Scholar 

  56. Anzai, Y., Hayashi, M., Fueki, N., Kurata, K., and Ohya, T. (2006) Protracted juvenile neuronal ceroid lipofuscinosis–an autopsy report and immunohistochemical analysis, Brain Dev., 28, 462–465.

    Article  PubMed  Google Scholar 

  57. Rahmadi, A., Steiner, N., and Munch, G. (2011) Advanced glycation end-products as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease, Clin. Chem. Lab. Med., 49, 385–391.

    Article  CAS  PubMed  Google Scholar 

  58. Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S. D., Stern, D., Sayre, L. M., Monnier, V. M., and Perry, G. (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology, Proc. Natl. Acad. Sci. USA, 91, 5710–5714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith, M. A., and Perry, G. (1994) Alzheimer disease: an imbalance of proteolytic regulation? Med. Hypotheses, 42, 277–279.

    Article  CAS  PubMed  Google Scholar 

  60. Stolzing, A., Widmer, R., Jung, T., Voss, P., and Grune, T. (2006) Degradation of glycated bovine serum albumin in microglial cells, Free Radic. Biol. Med., 40, 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  61. Gasic-Milenkovic, J., Dukic-Stefanovic, S., Deuther-Conrad, W., Gartner, U., and Munch, G. (2003) Betaamyloid peptide potentiates inflammatory responses induced by lipopolysaccharide, interferon-gamma and “advanced glycation end-products” in a murine microglia cell line, Eur. J. Neurosci., 17, 813–821.

    Article  PubMed  Google Scholar 

  62. Sasaki, N., Toki, S., Chowei, H., Saito, T., Nakano, N., Hayashi, Y., Takeuchi, M., and Makita, Z. (2001) Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease, Brain Res., 888, 256–262.

    Article  CAS  PubMed  Google Scholar 

  63. Li, X.-H., Du, L.-L., Cheng, X.-S., Jiang, X., Zhang, Y., Lv, B.-L., Liu, R., Wang, J.-Z., and Zhou, X.-W. (2013) Glycation exacerbates the neuronal toxicity of β-amyloid, Cell Death Dis., 4, e673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Taghavi, F., Habibi-Rezaei, M., Amani, M., Saboury, A. A., and Moosavi-Movahedi, A. A. (2016) The status of glycation in protein aggregation, Int. J. Biol. Macromol., 100, 67–74.

    Article  PubMed  Google Scholar 

  65. Munch, G., Westcott, B., Menini, T., and Gugliucci, A. (2012) Advanced glycation end-products and their pathogenic roles in neurological disorders, Amino Acids, 42, 1221–1236.

    Article  PubMed  Google Scholar 

  66. Fonteh, A. N., Harrington, R. J., Tsai, A., Liao, P., and Harrington, M. G. (2007) Free amino acid and dipeptide changes in the body fluids from Alzheimer’s disease subjects, Amino Acids, 32, 213–224.

    Article  CAS  PubMed  Google Scholar 

  67. Salahuddin, P., Rabbani, G., and Khan, R. H. (2014) The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach, Cell. Mol. Biol. Lett., 19, 407–437.

    Article  CAS  PubMed  Google Scholar 

  68. Sasaki, N., Takeuchi, M., Chowei, H., Kikuchi, S., Hayashi, Y., Nakano, N., Ikeda, H., Yamagishi, S., Kitamoto, T., Saito, T., and Makita, Z. (2002) Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt–Jakob disease with prion plaques, Neurosci. Lett., 326, 117–120.

    Article  CAS  PubMed  Google Scholar 

  69. Choi, Y.-G., Kim, J.-I., Jeon, Y.-C., Park, S.-J., Choi, E.-K., Rubenstein, R., Kascsak, R. J., Carp, R. I., and Kim, Y.-S. (2004) Nonenzymatic glycation at the N-terminus of pathogenic prion protein in transmissible spongiform encephalopathies, J. Biol. Chem., 279, 30402–30409.

    Article  CAS  PubMed  Google Scholar 

  70. Natale, G., Ferrucci, M., Lazzeri, G., Paparelli, A., and Fornai, F. (2011) Transmission of prions within the gut and towards the central nervous system, Prion, 5, 142–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Panza, G., Dumpitak, C., and Birkmann, E. (2010) Influence of the Maillard reaction to prion protein aggregation, Rejuv. Res., 13, 220–223.

    Article  CAS  Google Scholar 

  72. Choi, Y.-G., Kim, J.-I., Choi, E.-K., Carp, R.-I., and Kim, Y.-S. (2016) Semi-purification procedures of prions from a prion-infected brain using sucrose has no influence on the nonenzymatic glycation of the disease-associated prion isoform, Biol. Chem., 397, 125–133.

    Article  CAS  PubMed  Google Scholar 

  73. Choi, Y.-G., Shin, H.-Y., Kim, J.-I., Choi, E.-K., Carp, R. I., and Kim, Y.-S. (2016) N(ε) carboxymethyl modification of lysine residues in pathogenic prion isoforms, Mol. Neurobiol., 53, 3102–3112.

    Article  CAS  PubMed  Google Scholar 

  74. Welchman, R. L., Gordon, C., and Mayer, R. J. (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals, Nat. Rev. Mol. Cell Biol., 6, 599–609.

    Article  CAS  PubMed  Google Scholar 

  75. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., and Goedert, M. (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies, Proc. Natl. Acad. Sci. USA, 95, 6469–6473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hasegawa, M., Fujiwara, H., Nonaka, T., Wakabayashi, K., Takahashi, H., Lee, V. M.-Y., Trojanowski, J. Q., Mann, D., and Iwatsubo, T. (2002) Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions, J. Biol. Chem., 277, 49071–49076.

    Article  CAS  PubMed  Google Scholar 

  77. Gomez-Tortosa, E., Newell, K., Irizarry, M. C., Sanders, J. L., and Hyman, B. T. (2000) Alpha-synuclein immunoreactivity in dementia with Lewy bodies: morphological staging and comparison with ubiquitin immunostaining, Acta Neuropathol. (Berl.), 99, 352–357.

    Article  CAS  Google Scholar 

  78. Lowe, J., Blanchard, A., Morrell, K., Lennox, G., Reynolds, L., Billett, M., Landon, M., and Mayer, R. J. (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease, J. Pathol., 155, 9–15.

    Article  CAS  PubMed  Google Scholar 

  79. Manetto, V., Perry, G., Tabaton, M., Mulvihill, P., Fried, V. A., Smith, H. T., Gambetti, P., and Autilio-Gambetti, L. (1988) Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases, Proc. Natl. Acad. Sci. USA, 85, 4501–4505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sampathu, D. M., Giasson, B. I., Pawlyk, A. C., Trojanowski, J. Q., and Lee, V. M.-Y. (2003) Ubiquitination of alpha-synuclein is not required for formation of pathological inclusions in alpha-synucleinopathies, Am. J. Pathol., 163, 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tofaris, G. K., Razzaq, A., Ghetti, B., Lilley, K. S., and Spillantini, M. G. (2003) Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function, J. Biol. Chem., 278, 44405–44411.

    Article  CAS  PubMed  Google Scholar 

  82. Nonaka, T., Iwatsubo, T., and Hasegawa, M. (2005) Ubiquitination of alpha-synuclein, Biochemistry, 44, 361–368.

    Article  CAS  PubMed  Google Scholar 

  83. Rott, R., Szargel, R., Haskin, J., Shani, V., Shainskaya, A., Manov, I., Liani, E., Avraham, E., and Engelender, S. (2008) Monoubiquitylation of alpha-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells, J. Biol. Chem., 283, 3316–3328.

    Article  CAS  PubMed  Google Scholar 

  84. Lee, J. T., Wheeler, T. C., Li, L., and Chin, L.-S. (2008) Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death, Hum. Mol. Genet., 17, 906–917.

    Article  CAS  PubMed  Google Scholar 

  85. Hejjaoui, M., Haj-Yahya, M., Kumar, K. S. A., Brik, A., and Lashuel, H. A. (2011) Towards elucidation of the role of ubiquitination in the pathogenesis of Parkinson’s disease with semisynthetic ubiquitinated α-synuclein, Angew. Chem. Int. Ed. Engl., 50, 405–409.

    Article  CAS  PubMed  Google Scholar 

  86. Meier, F., Abeywardana, T., Dhall, A., Marotta, N. P., Varkey, J., Langen, R., Chatterjee, C., and Pratt, M. R. (2012) Semisynthetic, site-specific ubiquitin modification of α-synuclein reveals differential effects on aggregation, J. Am. Chem. Soc., 134, 5468–5471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lewis, Y. E., Abeywardana, T., Lin, Y. H., Galesic, A., and Pratt, M. R. (2016) Synthesis of a bis-thio-acetone (BTA) analogue of the lysine isopeptide bond and its application to investigate the effects of ubiquitination and SUMOylation on α-synuclein aggregation and toxicity, ACS Chem. Biol., 11, 931–942.

    Article  CAS  PubMed  Google Scholar 

  88. Haj-Yahya, M., Fauvet, B., Herman-Bachinsky, Y., Hejjaoui, M., Bavikar, S. N., Karthikeyan, S. V., Ciechanover, A., Lashuel, H. A., and Brik, A. (2013) Synthetic polyubiquitinated α-synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology, Proc. Natl. Acad. Sci. USA, 110, 17726–17731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abeywardana, T., Lin, Y. H., Rott, R., Engelender, S., and Pratt, M. R. (2013) Site-specific differences in proteasome-dependent degradation of monoubiquitinated α-synuclein, Chem. Biol., 20, 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  90. Krumova, P., and Weishaupt, J. H. (2013) Sumoylation in neurodegenerative diseases, Cell. Mol. Life Sci., 70, 2123–2138.

    Article  CAS  PubMed  Google Scholar 

  91. Flotho, A., and Melchior, F. (2013) Sumoylation: a regulatory protein modification in health and disease, Annu. Rev. Biochem., 82, 357–385.

    Article  CAS  PubMed  Google Scholar 

  92. Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H.-H., Bossis, G., Urlaub, H., Zweckstetter, M., Kugler, S., Melchior, F., Bahr, M., and Weishaupt, J. H. (2011) Sumoylation inhibits alpha-synuclein aggregation and toxicity, J. Cell Biol., 194, 49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dorval, V., and Fraser, P. E. (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein, J. Biol. Chem., 281, 9919–9924.

    Article  CAS  PubMed  Google Scholar 

  94. Abeywardana, T., and Pratt, M. R. (2015) Extent of inhibition of α-synuclein aggregation in vitro by SUMOylation is conjugation site-and SUMO isoform-selective, Biochemistry, 54, 959–961.

    Article  CAS  PubMed  Google Scholar 

  95. Kim, Y. M., Jang, W. H., Quezado, M. M., Oh, Y., Chung, K. C., Junn, E., and Mouradian, M. M. (2011) Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation, J. Neurol. Sci., 307, 157–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sirover, M. A. (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control, Biochim. Biophys. Acta, 1810, 741–751.

    Article  CAS  PubMed  Google Scholar 

  97. Kosova, A. A., Khodyreva, S. N., and Lavrik, O. I. (2015) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with apurinic/apyrimidinic sites in DNA, Mutat. Res., 779, 46–57.

    Article  CAS  PubMed  Google Scholar 

  98. Arutyunova, E. I., Danshina, P. V., Domnina, L. V., Pleten, A. P., and Muronetz, V. I. (2003) Oxidation of glyceraldehyde-3-phosphate dehydrogenase enhances its binding to nucleic acids, Biochem. Biophys. Res. Commun., 307, 547–552.

    Article  CAS  PubMed  Google Scholar 

  99. Arutyunova, E. I., Domnina, L. V., Chudinova, A. A., Makshakova, O. N., Arutyunov, D. Y., and Muronetz, V. I. (2013) Localization of non-native D-glyceraldehyde-3-phosphate dehydrogenase in growing and apoptotic HeLa cells, Biochemistry, 78, 91–95.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Muronetz.

Additional information

Original Russian Text © V. I. Muronetz, A. K. Melnikova, Z. N. Seferbekova, K. V. Barinova, E. V. Schmalhausen, 2017, published in Biokhimiya, 2017, Vol. 82, No. 8, pp. 1138-1153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muronetz, V.I., Melnikova, A.K., Seferbekova, Z.N. et al. Glycation, glycolysis, and neurodegenerative diseases: Is there any connection?. Biochemistry Moscow 82, 874–886 (2017). https://doi.org/10.1134/S0006297917080028

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917080028

Keywords

Navigation