Intracellular cargo transport by kinesin-3 motors

Abstract

Intracellular transport along microtubules enables cellular cargoes to efficiently reach the extremities of large, eukaryotic cells. While it would take more than 200 years for a small vesicle to diffuse from the cell body to the growing tip of a one-meter long axon, transport by a kinesin allows delivery in one week. It is clear from this example that the evolution of intracellular transport was tightly linked to the development of complex and macroscopic life forms. The human genome encodes 45 kinesins, 8 of those belonging to the family of kinesin-3 organelle transporters that are known to transport a variety of cargoes towards the plus end of microtubules. However, their mode of action, their tertiary structure, and regulation are controversial. In this review, we summarize the latest developments in our understanding of these fascinating molecular motors.

References

  1. 1.

    Cross, R. A. (2016) Review: Mechanochemistry of the kinesin-1 ATPase, Biopolymers, 105, 476–482.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Lawrence, C. J., Dawe, R. K., Christie, K. R., Cleveland, D. W., Dawson, S. C., Endow, S. A., Goldstein, L. S., Goodson, H. V., Hirokawa, N., Howard, J., Malmberg, R. L., Mcintosh, J. R., Miki, H., Mitchison, T. J., Okada, Y., Reddy, A. S., Saxton, W. M., Schliwa, M., Scholey, J. M., Vale, R. D., Walczak, C. E., and Wordeman, L. (2004) A standardized kinesin nomenclature, J. Cell Biol., 167, 19–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Wickstead, B., Gull, K., and Richards, T. A. (2010) Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton, BMC Evol. Biol., 10,110.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Hall, D. H., and Hedgecock, E. M. (1991) Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans, Cell, 65, 837–847.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Otsuka, A. J., Jeyaprakash, A., Garcia-Anoveros, J., Tang, L. Z., Fisk, G., Hartshorne, T., Franco, R., and Born, T. (1991) The C. elegans unc-104 gene encodes a putative kinesin heavy chain-like protein, Neuron, 6, 113–122.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Pollock, N., De Hostos, E. L., Turck, C. W., and Vale, R. D. (1999) Reconstitution of membrane transport powered by a novel dimeric kinesin motor of the Unc104/KIF1A family purified from Dictyostelium, J. Cell Biol., 147, 493–506.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Wedlich-Soldner, R. (2002) A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis, EMBO J., 21, 2946–2957.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Seidel, C., Moreno-Velasquez, S. D., Riquelme, M., and Fischer, R. (2013) Neurospora crassa NKIN2, a kinesin-3 motor, transports early endosomes and is required for polarized growth, Eukaryot. Cell, 12, 1020–1032.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Zekert, N., and Fischer, R. (2009) The Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules, Mol. Biol. Cell, 20, 673–684.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Kratchmarov, R., Kramer, T., Greco, T. M., Taylor, M. P., Ch’ng, T. H., Cristea, I. M., and Enquist, L. W. (2013) Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaher-pesvirus particles in neurons, J. Virol., 87, 9431–9440.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Lo, K. Y., Kuzmin, A., Unger, S. M., Petersen, J. D., and Silverman, M. A. (2011) KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons, Neurosci. Lett., 491, 168–173.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Nangaku, M., Sato-Yoshitake, R., Okada, Y., Noda, Y., Takemura, R., Yamazaki, H., and Hirokawa, N. (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria, Cell, 79, 1209–1220.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Niwa, S., Tanaka, Y., and Hirokawa, N. (2008) KIF1Bbeta-and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD, Nat. Cell Biol., 10, 1269–1279.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Okada, Y., Yamazaki, H., Sekine-Aizawa, Y., and Hirokawa, N. (1995) The neuron-specific kinesin super-family protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors, Cell, 81, 769–780.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Theisen, U., Straube, E., and Straube, A. (2012) Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions, Dev. Cell, 23, 1153–1166.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Wagner, O. I., Esposito, A., Kohler, B., Chen, C. W., Shen, C. P., Wu, G. H., Butkevich, E., Mandalapu, S., Wenzel, D., Wouters, F. S., and Klopfenstein, D. R. (2009) Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans, Proc. Natl. Acad. Sci. USA, 106, 19605–19610.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Wozniak, M. J., Melzer, M., Dorner, C., Haring, H. U., and Lammers, R. (2005) The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein, BMC Cell Biol., 6,35.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Miki, H., Okada, Y., and Hirokawa, N. (2005) Analysis of the kinesin superfamily: insights into structure and function, Trends Cell Biol., 15, 467–476.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Fuchs, F. (2004) Role of Unc104/KIF1-related motor proteins in mitochondrial transport in neurospora crassa, Mol. Biol. Cell, 16, 153–161.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Dor, T., Cinnamon, Y., Raymond, L., Shaag, A., Bouslam, N., Bouhouche, A., Gaussen, M., Meyer, V., Durr, A., Brice, A., Benomar, A., Stevanin, G., Schuelke, M., and Edvardson, S. (2014) KIF1C mutations in two families with hereditary spastic paraparesis and cerebellar dysfunction, J. Med. Genet., 51, 137–142.

    PubMed  Article  Google Scholar 

  21. 21.

    Yonekawa, Y., Harada, A., Okada, Y., Funakoshi, T., Kanai, Y., Takei, Y., Terada, S., Noda, T., and Hirokawa, N. (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice, J. Cell Biol., 141, 431–441.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Caballero Oteyza, A., Battaloglu, E., Ocek, L., Lindig, T., Reichbauer, J., Rebelo, A. P., Gonzalez, M. A., Zorlu, Y., Ozes, B., Timmann, D., Bender, B., Woehlke, G., Zuchner, S., Schols, L., and Schule, R. (2014) Motor protein mutations cause a new form of hereditary spastic paraplegia, Neurology, 82, 2007–2016.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Aulchenko, Y. S., Hoppenbrouwers, I. A., Ramagopalan, S. V., Broer, L., Jafari, N., Hillert, J., Link, J., Lundstrom, W., Greiner, E., Dessa Sadovnick, A., Goossens, D., Van Broeckhoven, C., Del-Favero, J., Ebers, G. C., Oostra, B. A., Van Duijn, C. M., and Hintzen, R. Q. (2008) Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis, Nat. Genet., 40, 1402–1403.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Kern, J. V., Zhang, Y. V., Kramer, S., Brenman, J. E., and Rasse, T. M. (2013) The kinesin-3, Unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila, Genetics, 195, 59–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Lenz, J. H., Schuchardt, I., Straube, A., and Steinberg, G. (2006) A dynein loading zone for retrograde endosome motility at microtubule plus-ends, EMBO J., 25, 2275–2286.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Torres, J. Z., Summers, M. K., Peterson, D., Brauer, M. J., Lee, J., Senese, S., Gholkar, A. A., Lo, Y. C., Lei, X., Jung, K., Anderson, D. C., Davis, D. P., Belmont, L., and Jackson, P. K. (2011) The STARD9/Kif16a kinesin associates with mitotic microtubules and regulates spindle pole assembly, Cell, 147, 1309–1323.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Sagona, A. P., Nezis, I. P., Pedersen, N. M., Liestol, K., Poulton, J., Rusten, T. E., Skotheim, R. I., Raiborg, C., and Stenmark, H. (2010) PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody, Nat. Cell Biol., 12, 362–371.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Drerup, C. M., Lusk, S., and Nechiporuk, A. (2016) Kif1B interacts with KBP to promote axon elongation by localizing a microtubule regulator to growth cones, J. Neurosci., 36, 7014–7026.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Fehling, S. K., Noda, T., Maisner, A., Lamp, B., Conzelmann, K. K., Kawaoka, Y., Klenk, H. D., Garten, W., and Strecker, T. (2013) The microtubule motor protein KIF13A is involved in intracellular trafficking of the Lassa virus matrix protein Z, Cell. Microbiol., 15, 315–334.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Horiguchi, K., Hanada, T., Fukui, Y., and Chishti, A. H. (2006) Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity, J. Cell Biol., 174, 425–436.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Ueno, H., Huang, X., Tanaka, Y., and Hirokawa, N. (2011) KIF16B/Rab14 molecular motor complex is critical for early embryonic development by transporting FGF receptor, Dev. Cell, 20, 60–71.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Tanaka, Y., Niwa, S., Dong, M., Farkhondeh, A., Wang, L., Zhou, R., and Hirokawa, N. (2016) The molecular motor KIF1A transports the TrkA neurotrophin receptor and is essential for sensory neuron survival and function, Neuron, 90, 1215–1229.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Hung, C. O., and Coleman, M. P. (2016) KIF1A mediates axonal transport of BACE1 and identification of independently moving cargoes in living SCG neurons, Traffic, 17, 1155–1167.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Shin, H., Wyszynski, M., Huh, K. H., Valtschanoff, J. G., Lee, J. R., Ko, J., Streuli, M., Weinberg, R. J., Sheng, M., and Kim, E. (2003) Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha, J. Biol. Chem., 278, 11393–11401.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Matsushita, M., Tanaka, S., Nakamura, N., Inoue, H., and Kanazawa, H. (2004) A novel kinesin-like protein, KIF1Bbeta3 is involved in the movement of lysosomes to the cell periphery in non-neuronal cells, Traffic, 5, 140–151.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Zhou, R., Niwa, S., Guillaud, L., Tong, Y., and Hirokawa, N. (2013) A molecular motor, KIF13A, controls anxiety by transporting the serotonin type 1A receptor, Cell Rep., 3, 509–519.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Nakagawa, T., Setou, M., Seog, D., Ogasawara, K., Dohmae, N., Takio, K., and Hirokawa, N. (2000) A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex, Cell, 103, 569–581.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Yamada, K. H., Hanada, T., and Chishti, A. H. (2007) The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B, Biochemistry, 46, 10039–10045.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Yamada, K. H., Nakajima, Y., Geyer, M., Wary, K. K., Ushio-Fukai, M., Komarova, Y., and Malik, A. B. (2014) KIF13B regulates angiogenesis through Golgi to plasma membrane trafficking of VEGFR2, J. Cell Sci., 127, 4518–4530.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Xing, B. M., Yang, Y. R., Du, J. X., Chen, H. J., Qi, C., Huang, Z. H., Zhang, Y., and Wang, Y. (2012) Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B, J. Neurosci., 32, 14709–14721.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Bielska, E., Schuster, M., Roger, Y., Berepiki, A., Soanes, D. M., Talbot, N. J., and Steinberg, G. (2014) Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes, J. Cell Biol., 204, 989–1007.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Tanaka, K., Sugiura, Y., Ichishita, R., Mihara, K., and Oka, T. (2011) KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells, J. Cell Sci., 124, 2457–2465.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Peden, E. M., and Barr, M. M. (2005) The KLP-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans, Curr. Biol., 15, 394–404.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Monteiro, M. I., Ahlawat, S., Kowalski, J. R., Malkin, E., Koushika, S. P., and Juo, P. (2012) The kinesin-3 family motor KLP-4 regulates anterograde trafficking of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans, Mol. Biol. Cell, 23, 3647–3662.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Westerholm-Parvinen, A., Vernos, I., and Serrano, L. (2000) Kinesin subfamily UNC104 contains a FHA domain: boundaries and physicochemical characterization, FEBS Lett., 486, 285–290.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Endow, S. A. (1999) Determinants of molecular motor directionality, Nat. Cell Biol., 1, E163–167.

    Article  Google Scholar 

  47. 47.

    Vale, R. D., Case, R., Sablin, E., Hart, C., and Fletterick, R. (2000) Searching for kinesin’s mechanical amplifier, Philos. Trans. R Soc. Lond. B Biol. Sci., 355, 449–457.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Okada, Y., and Hirokawa, N. (1999) A processive single-headed motor: kinesin superfamily protein KIF1A, Science, 283, 1152–1157.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Okada, Y., and Hirokawa, N. (2000) Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin, Proc. Natl. Acad. Sci. USA, 97, 640–645.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Soppina, V., and Verhey, K. J. (2014) The family-specific K-loop influences the microtubule on-rate but not the superpro-cessivity of kinesin-3 motors, Mol. Biol. Cell, 25, 2161–2170.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Rogers, K. R., Weiss, S., Crevel, I., Brophy, P. J., Geeves, M., and Cross, R. (2001) KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry, EMBO J., 20, 5101–5113.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Matsushita, M., Yamamoto, R., Mitsui, K., and Kanazawa, H. (2009) Altered motor activity of alternative splice variants of the mammalian kinesin-3 protein KIF1B, Traffic, 10, 1647–1654.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Scarabelli, G., Soppina, V., Yao, X. Q., Atherton, J., Moores, C. A., Verhey, K. J., and Grant, B. J. (2015) Mapping the processivity determinants of the kinesin-3 motor domain, Biophys. J., 109, 1537–1540.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Atherton, J., Farabella, I., Yu, I. M., Rosenfeld, S. S., Houdusse, A., Topf, M., and Moores, C. A. (2014) Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins, Elife, 3, e03680.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Peckham, M. (2011) Coiled coils and SAH domains in cytoskeletal molecular motors, Biochem. Soc. Trans., 39, 1142–1148.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Dorner, C., Ullrich, A., Haring, H. U., and Lammers, R. (1999) The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family, J. Biol. Chem., 274, 33654–33660.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Hammond, J. W., Cai, D., Blasius, T. L., Li, Z., Jiang, Y., Jih, G. T., Meyhofer, E., and Verhey, K. J. (2009) Mammalian kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition, PLoS Biol., 7, e72.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Soppina, V., Norris, S. R., Dizaji, A. S., Kortus, M., Veatch, S., Peckham, M., and Verhey, K. J. (2014) Dimerization of mammalian kinesin-3 motors results in superprocessive motion, Proc. Natl. Acad. Sci. USA, 111, 5562–5567.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Li, J., Lee, G. I., Van Doren, S. R., and Walker, J. C. (2000) The FHA domain mediates phosphoprotein interactions, J. Cell Sci., 113 (Pt. 23), 4143–4149.

    CAS  PubMed  Google Scholar 

  60. 60.

    Hammet, A., Pike, B. L., Mcnees, C. J., Conlan, L. A., Tenis, N., and Heierhorst, J. (2003) FHA domains as phospho-threonine binding modules in cell signaling, IUBMB Life, 55, 23–27.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Durocher, D., and Jackson, S. P. (2002) The FHA domain, FEBS Lett., 513, 58–66.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Watters, J. W., Dewar, K., Lehoczky, J., Boyartchuk, V., and Dietrich, W. F. (2001) Kif1C, a kinesin-like motor protein, mediates mouse macrophage resistance to anthrax lethal factor, Curr. Biol., 11, 1503–1511.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Xue, X., Jaulin, F., Espenel, C., and Kreitzer, G. (2010) PH-domain-dependent selective transport of p75 by kinesin-3 family motors in non-polarized MDCK cells, J. Cell Sci., 123, 1732–1741.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Klopfenstein, D. R., Tomishige, M., Stuurman, N., and Vale, R. D. (2002) Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor, Cell, 109, 347–358.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Blatner, N. R., Wilson, M. I., Lei, C., Hong, W., Murray, D., Williams, R. L., and Cho, W. (2007) The structural basis of novel endosome anchoring activity of KIF16B kinesin, EMBO J., 26, 3709–3719.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Hoepfner, S., Severin, F., Cabezas, A., Habermann, B., Runge, A., Gillooly, D., Stenmark, H., and Zerial, M. (2005) Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B, Cell, 121, 437–450.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Steinmetz, M. O., and Akhmanova, A. (2008) Capturing protein tails by CAP-Gly domains, Trends Biochem. Sci., 33, 535–545.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Williamson, M. P. (1994) The structure and function of proline-rich regions in proteins, Biochem. J., 297 (Pt. 2), 249–260.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Schlager, M. A., Kapitein, L. C., Grigoriev, I., Burzynski, G. M., Wulf, P. S., Keijzer, N., De Graaff, E., Fukuda, M., Shepherd, I. T., Akhmanova, A., and Hoogenraad, C. C. (2010) Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis, EMBO J., 29, 1637–1651.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Lee, P. L., Ohlson, M. B., and Pfeffer, S. R. (2015) Rab6 regulation of the kinesin family KIF1C motor domain contributes to Golgi tethering, Elife,4.

  71. 71.

    Okada, Y., Higuchi, H., and Hirokawa, N. (2003) Processivity of the single-headed kinesin KIF1A through biased binding to tubulin, Nature, 424, 574–577.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Oriola, D., and Casademunt, J. (2013) Cooperative force generation of KIF1A Brownian motors, Phys. Rev. Lett., 111, 048103.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Al-Bassam, J., Cui, Y., Klopfenstein, D., Carragher, B. O., Vale, R. D., and Milligan, R. A. (2003) Distinct conformations of the kinesin Unc104 neck regulate a monomer to dimer motor transition, J. Cell Biol., 163, 743–753.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Rashid, D. J., Bononi, J., Tripet, B. P., Hodges, R. S., and Pierce, D. W. (2005) Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A, J. Pept. Res., 65, 538–549.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Tomishige, M., Klopfenstein, D. R., and Vale, R. D. (2002) Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization, Science, 297, 2263–2267.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Hirokawa, N., Pfister, K. K., Yorifuji, H., Wagner, M. C., Brady, S. T., and Bloom, G. S. (1989) Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration, Cell, 56, 867–878.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Hackney, D. D., Levitt, J. D., and Suhan, J. (1992) Kinesin undergoes a 9 S to 6 S conformational transition, J. Biol. Chem., 267, 8696–8701.

    CAS  PubMed  Google Scholar 

  78. 78.

    Friedman, D. S., and Vale, R. D. (1999) Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain, Nat. Cell Biol., 1, 293–297.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Stock, M. F., Guerrero, J., Cobb, B., Eggers, C. T., Huang, T. G., Li, X., and Hackney, D. D. (1999) Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity, J. Biol. Chem., 274, 14617–14623.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Coy, D. L., Hancock, W. O., Wagenbach, M., and Howard, J. (1999) Kinesin’s tail domain is an inhibitory regulator of the motor domain, Nat. Cell Biol., 1, 288–292.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Hirokawa, N., and Noda, Y. (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics, Physiol. Rev., 88, 1089–1118.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Huo, L., Yue, Y., Ren, J., Yu, J., Liu, J., Yu, Y., Ye, F., Xu, T., Zhang, M., and Feng, W. (2012) The CC1-FHA tandem as a central hub for controlling the dimerization and activation of kinesin-3 KIF1A, Structure, 20, 1550–1561.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Yue, Y., Sheng, Y., Zhang, H. N., Yu, Y., Huo, L., Feng, W., and Xu, T. (2013) The CC1-FHA dimer is essential for KIF1A-mediated axonal transport of synaptic vesicles in C. elegans, Biochem. Biophys. Res. Commun., 435, 441–446.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Ren, J., Huo, L., Wang, W., Zhang, Y., Li, W., Lou, J., Xu, T., and Feng, W. (2016) Structural correlation of the neck coil with the coiled-coil (CC1)-forkhead-associated (FHA) tandem for active kinesin-3 KIF13A, J. Biol. Chem., 291, 3581–3594.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Farkhondeh, A., Niwa, S., Takei, Y., and Hirokawa, N. (2015) Characterizing KIF16B in neurons reveals a novel intramolecular “stalk inhibition” mechanism that regulates its capacity to potentiate the selective somatodendritic localization of early endosomes, J. Neurosci., 35, 5067–5086.

    PubMed  Article  Google Scholar 

  86. 86.

    Yoshimura, Y., Terabayashi, T., and Miki, H. (2010) Par1b/MARK2 phosphorylates kinesin-like motor protein GAKIN/KIF13B to regulate axon formation, Mol. Cell Biol., 30, 2206–2219.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Hsu, C. C., Moncaleano, J. D., and Wagner, O. I. (2011) Subcellular distribution of UNC-104(KIF1A) upon bind-ing to adaptors as UNC-16(JIP3), DNC-1(DCTN1/ Glued) and SYD-2(Liprin-alpha) in C. elegans neurons, Neuroscience, 176, 39–52.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Wu, G. H., Muthaiyan Shanmugam, M., Bhan, P., Huang, Y. H., and Wagner, O. I. (2016) Identification and characterization of LIN-2(CASK) as a regulator of kinesin-3 UNC-104(KIF1A) motility and clustering in neurons, Traffic, 17, 891–907.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Tong, Y., Tempel, W., Wang, H., Yamada, K., Shen, L., Senisterra, G. A., Mackenzie, F., Chishti, A. H., and Park, H. W. (2010) Phosphorylation-independent dualsite binding of the FHA domain of KIF13 mediates phospho-inositide transport via centaurin alpha1, Proc. Natl. Acad. Sci. USA, 107, 20346–20351.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Hutagalung, A. H., and Novick, P. J. (2011) Role of Rab GTPases in membrane traffic and cell physiology, Physiol. Rev., 91, 119–149.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Novick, P., and Zerial, M. (1997) The diversity of Rab proteins in vesicle transport, Curr. Opin. Cell Biol., 9, 496–504.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Zerial, M., and Mcbride, H. (2001) Rab proteins as membrane organizers, Nat. Rev. Mol. Cell Biol., 2, 107–117.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Fischer Von Mollard, G., Sudhof, T. C., and Jahn, R. (1991) A small GTP-binding protein dissociates from synaptic vesicles during exocytosis, Nature, 349, 79–81.

    Article  Google Scholar 

  94. 94.

    Stettler, O., Moya, K. L., Zahraoui, A., and Tavitian, B. (1994) Developmental changes in the localization of the synaptic vesicle protein rab3A in rat brain, Neuroscience, 62, 587–600.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Schluter, O. M., Schmitz, F., Jahn, R., Rosenmund, C., and Sudhof, T. C. (2004) A complete genetic analysis of neuronal Rab3 function, J. Neurosci., 24, 6629–6637.

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Delevoye, C., Miserey-Lenkei, S., Montagnac, G., Gilles-Marsens, F., Paul-Gilloteaux, P., Giordano, F., Waharte, F., Marks, M. S., Goud, B., and Raposo, G. (2014) Recycling endosome tubule morphogenesis from sorting endosomes requires the kinesin motor KIF13A, Cell Rep., 6, 445–454.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Mauvezin, C., Neisch, A. L., Ayala, C. I., Kim, J., Beltrame, A., Braden, C. R., Gardner, M. K., Hays, T. S., and Neufeld, T. P. (2016) Coordination of autophagosome-lysosome fusion and transport by a Klp98A–Rab14 complex in Drosophila, J. Cell Sci., 129, 971–982.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Hallak, M. E., Rodriguez, J. A., Barra, H. S., and Caputto, R. (1977) Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin, FEBS Lett., 73, 147–150.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Edde, B., Rossier, J., Le Caer, J. P., Desbruyeres, E., Gros, F., and Denoulet, P. (1990) Posttranslational glutamylation of alpha-tubulin, Science, 247, 83–85.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Redeker, V., Levilliers, N., Schmitter, J. M., Le Caer, J. P., Rossier, J., Adoutte, A., and Bre, M. H. (1994) Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules, Science, 266, 1688–1691.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    L’hernault, S. W., and Rosenbaum, J. L. (1985) Chlamydomonas alpha-tubulin is posttranslationally modi-fied by acetylation on the epsilon-amino group of a lysine, Biochemistry, 24, 473–478.

    PubMed  Article  Google Scholar 

  102. 102.

    Janke, C. (2014) The tubulin code: molecular compo-nents, readout mechanisms, and functions, J. Cell Biol., 206, 461–472.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Ikegami, K., Heier, R. L., Taruishi, M., Takagi, H., Mukai, M., Shimma, S., Taira, S., Hatanaka, K., Morone, N., Yao, I., Campbell, P. K., Yuasa, S., Janke, C., Macgregor, G. R., and Setou, M. (2007) Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function, Proc. Natl. Acad. Sci. USA, 104, 3213–3218.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    O’hagan, R., Piasecki, B. P., Silva, M., Phirke, P., Nguyen, K. C., Hall, D. H., Swoboda, P., and Barr, M. M. (2011) The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans, Curr. Biol., 21, 1685–1694.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Cai, D., Mcewen, D. P., Martens, J. R., Meyhofer, E., and Verhey, K. J. (2009) Single molecule imaging reveals dif-ferences in microtubule track selection between kinesin motors, PLoS Biol., 7, e1000216.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106.

    Seidel, C., Zekert, N., and Fischer, R. (2012) The Aspergillus nidulans kinesin-3 tail is necessary and sufficient to recognize modified microtubules, PLoS One, 7, e30976.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Steinberg, G. (2015) Kinesin-3 in the basidiomycete Ustilago maydis transports organelles along the entire microtubule array, Fungal Genet. Biol., 74, 59–61.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Bhuwania, R., Castro-Castro, A., and Linder, S. (2014) Microtubule acetylation regulates dynamics of KIF1C-powered vesicles and contact of microtubule plus ends with podosomes, Eur. J. Cell Biol., 93, 424–437.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Guardia, C. M., Farias, G. G., Jia, R., Pu, J., and Bonifacino, J. S. (2016) BORC functions upstream of kinesins 1 and 3 to coordinate regional movement of lyso-somes along different microtubule tracks, Cell Rep., 17, 1950–1961.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Van Der Vaart, B., Akhmanova, A., and Straube, A. (2009) Regulation of microtubule dynamic instability, Biochem. Soc. Trans., 37, 1007–1013.

    PubMed  Article  CAS  Google Scholar 

  111. 111.

    Atherton, J., Houdusse, A., and Moores, C. (2013) MAPping out distribution routes for kinesin couriers, Biol. Cell, 105, 465–487.

    CAS  PubMed  Google Scholar 

  112. 112.

    Schneider, R., Korten, T., Walter Wilhelm, J., and Diez, S. (2015) Kinesin-1 motors can circumvent permanent road-blocks by side-shifting to neighboring protofilaments, Biophys. J., 108, 2249–2257.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Dixit, R., Ross, J. L., Goldman, Y. E., and Holzbaur, E. L. (2008) Differential regulation of dynein and kinesin motor proteins by tau, Science, 319, 1086–1089.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Seitz, A., Kojima, H., Oiwa, K., Mandelkow, E. M., Song, Y. H., and Mandelkow, E. (2002) Single-molecule investi-gation of the interference between kinesin, tau and MAP2c, EMBO J., 21, 4896–4905.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Samora, C. P., Mogessie, B., Conway, L., Ross, J. L., Straube, A., and Mcainsh, A. D. (2011) MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis, Nat. Cell Biol., 13, 1040–1050.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Semenova, I., Ikeda, K., Resaul, K., Kraikivski, P., Aguiar, M., Gygi, S., Zaliapin, I., Cowan, A., and Rodionov, V. (2014) Regulation of microtubule-based transport by MAP4, Mol. Biol. Cell, 25, 3119–3132.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. 117.

    Lipka, J., Kapitein, L. C., Jaworski, J., and Hoogenraad, C. C. (2016) Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites, EMBO J., 35, 302–318.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Tien, N. W., Wu, G. H., Hsu, C. C., Chang, C. Y., and Wagner, O. I. (2011) Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor’s motility characteristics in C. elegans neurons, Neurobiol. Dis., 43, 495–506.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Efimova, N., Grimaldi, A., Bachmann, A., Frye, K., Zhu, X., Feoktistov, A., Straube, A., and Kaverina, I. (2014) Podosome-regulating kinesin KIF1C translocates to the cell periphery in a CLASP-dependent manner, J. Cell Sci., 127, 5179–5188.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. 120.

    Kopp, P., Lammers, R., Aepfelbacher, M., Woehlke, G., Rudel, T., Machuy, N., Steffen, W., and Linder, S. (2006) The kinesin KIF1C and microtubule plus ends regulate podosome dynamics in macrophages, Mol. Biol. Cell, 17, 2811–2823.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Ally, S., Larson, A. G., Barlan, K., Rice, S. E., and Gelfand, V. I. (2009) Opposite-polarity motors activate one another to trigger cargo transport in live cells, J. Cell Biol., 187, 1071–1082.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Hancock, W. O. (2014) Bidirectional cargo transport: moving beyond tug of war, Nat. Rev. Mol. Cell Biol., 15, 615–628.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Amrute-Nayak, M., and Bullock, S. L. (2012) Single-molecule assays reveal that RNA localization signals regulate dynein-dynactin copy number on individual transcript cargoes, Nat. Cell Biol., 14, 416–423.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Derr, N. D., Goodman, B. S., Jungmann, R., Leschziner, A. E., Shih, W. M., and Reck-Peterson, S. L. (2012) Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold, Science, 338, 662–665.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Splinter, D., Tanenbaum, M. E., Lindqvist, A., Jaarsma, D., Flotho, A., Yu, K. L., Grigoriev, I., Engelsma, D., Haasdijk, E. D., Keijzer, N., Demmers, J., Fornerod, M., Melchior, F., Hoogenraad, C. C., Medema, R. H., and Akhmanova, A. (2010) Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate cen-trosome and nuclear positioning during mitotic entry, PLoS Biol., 8, e1000350.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. 126.

    Fu, M. M., and Holzbaur, E. L. (2014) Integrated regulation of motor-driven organelle transport by scaffolding proteins, Trends Cell Biol., 24, 564–574.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Belyy, V., Schlager, M. A., Foster, H., Reimer, A. E., Carter, A. P., and Yildiz, A. (2016) The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition, Nat. Cell Biol., 18, 1018–1024.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Schlager, M. A., Serra-Marques, A., Grigoriev, I., Gumy, L. F., Esteves Da Silva, M., Wulf, P. S., Akhmanova, A., and Hoogenraad, C. C. (2014) Bicaudal d-family adaptor proteins control the velocity of dynein-based movements, Cell Rep., 8, 1248–1256.

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Kevenaar, J. T., Bianchi, S., Van Spronsen, M., Olieric, N., Lipka, J., Frias, C. P., Mikhaylova, M., Harterink, M., Keijzer, N., Wulf, P. S., Hilbert, M., Kapitein, L. C., De Graaff, E., Ahkmanova, A., Steinmetz, M. O., and Hoogenraad, C. C. (2016) Kinesin-binding protein controls microtubule dynamics and cargo trafficking by regulating kinesin motor activity, Curr. Biol., 26, 849–861.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., Mcwilliam, H., Remmert, M., Soding, J., Thompson, J. D., and Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7,539.

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Boc, A., Diallo, A. B., and Makarenkov, V. (2012) T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks, Nucleic Acids Res., 40, W573–579.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Straube.

Additional information

This article is an open access publication.

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 7, pp. 1047–1062.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-040, June 19, 2017.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, N., Straube, A. Intracellular cargo transport by kinesin-3 motors. Biochemistry Moscow 82, 803–815 (2017). https://doi.org/10.1134/S0006297917070057

Download citation

Keywords

  • molecular motors
  • microtubule-based transport
  • kinesin
  • autoinhibition
  • intracellular transport
  • Unc104/KIF1
  • cargo trafficking