Biochemistry (Moscow)

, Volume 82, Issue 4, pp 490–500 | Cite as

Femtosecond and picosecond dynamics of recombinant bacteriorhodopsin primary reactions compared to the native protein in trimeric and monomeric forms

  • O. A. SmitienkoEmail author
  • O. V. Nekrasova
  • A. V. Kudriavtsev
  • M. A. Yakovleva
  • I. V. Shelaev
  • F. E. Gostev
  • D. A. Dolgikh
  • I. B. Kolchugina
  • V. A. Nadtochenko
  • M. P. Kirpichnikov
  • T. B. Feldman
  • M. A. Ostrovsky


Photochemical reaction dynamics of the primary events in recombinant bacteriorhodopsin (bRrec) was studied by femtosecond laser absorption spectroscopy with 25-fs time resolution. bRrec was produced in an Escherichia coli expression system. Since bRrec was prepared in a DMPC–CHAPS micelle system in the monomeric form, its comparison with trimeric and monomeric forms of the native bacteriorhodopsin (bRtrim and bRmon, respectively) was carried out. We found that bRrec intermediate I (excited state of bR) was formed in the range of 100 fs, as in the case of bRtrim and bRmon. Further processes, namely the decay of the excited state I and the formation of intermediates J and K of bRrec, occurred more slowly compared to bRtrim, but similarly to bRmon. The lifetime of intermediate I, judging from the signal of ΔA ESA(470-480 nm), was 0.68 ps (78%) and 4.4 ps (22%) for bRrec, 0.52 ps (73%) and 1.7 ps (27%) for bRmon, and 0.45 ps (90%) and 1.75 ps (10%) for bRtrim. The formation time of intermediate K, judging from the signal of ΔA GSA(625-635 nm), was 13.5 ps for bRrec, 9.8 ps for bRmon, and 4.3 ps for bRtrim. In addition, there was a decrease in the photoreaction efficiency of bRrec and bRmon as seen by a decrease in absorbance in the differential spectrum of the intermediate K by ~14%. Since photochemical properties of bRrec are similar to those of the monomeric form of the native protein, bRrec and its mutants can be considered as a basis for further studies of the mechanism of bacteriorhodopsin functioning.


bacteriorhodopsin recombinant protein primary reactions femtosecond absorption laser spectroscopy 





native bacteriorhodopsin in the monomeric form


recombinant bacteriorhodopsin


native bacteriorhodopsin in the trimeric form


circular dichroism




excited state absorption for the S1 state of bR




ground state absorption for the S0 state of bR or its photoreaction products




Schiff base


stimulated emission from the S1 state of bR


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voet, D., and Voet, J. G. (2004) in Biochemistry (Hoboken, N. J., ed.) 3rd Edn., Wiley & Sons, New York.Google Scholar
  2. 2.
    Henderson, R., and Shotton, D. (1980) Crystallization of purple membrane in three dimensions, J. Mol. Biol., 139, 99–109.CrossRefPubMedGoogle Scholar
  3. 3.
    Bogomolni, R. A., Baker, R. A., Lozier, R. H., and Stoeckenius, W. (1976) Light-driven proton translocations in Halobacterium halobium, Biochim. Biophys. Acta, 440, 68–88.CrossRefPubMedGoogle Scholar
  4. 4.
    Hartmann, R., Sickinger, H. D., and Oesterhelt, D. (1977) Quantitative aspects of energy conversion in halobacteria, FEBS Lett., 82, 1–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Drachev, L. A., Kaulen, A. D., and Skulachev, V. P. (1984) Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin, FEBS Lett., 178, 331–335.CrossRefGoogle Scholar
  6. 6.
    Lozier, R. H., Bogomolni, R. A., and Stoeckenius, W. (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium, Biophys. J., 15, 955–962.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Danshina, S. V., Drachev, L. A., and Kaulen, A. D. (1992) The inward H+ pathway in bacteriorhodopsin: the role of M412 and P(N)560 intermediates, Photochem. Photobiol., 55, 735–740.CrossRefGoogle Scholar
  8. 8.
    Varo, G., and Lanyi, J. K. (1991) Thermodynamics and energy coupling in the bacteriorhodopsin photocycle, Biochemistry, 30, 5016–5022.CrossRefPubMedGoogle Scholar
  9. 9.
    Edman, K., Nollert, P., Royant, A., Belrhali, H., PebayPeyroula, E., Hajdu, J., Neutze, R., and Landau, E. M. (1999) High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle, Nature, 401, 822–826.CrossRefPubMedGoogle Scholar
  10. 10.
    Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, F. E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J. Mol. Biol., 213, 899–929.CrossRefPubMedGoogle Scholar
  11. 11.
    Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., and Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55 Å resolution, J. Mol. Biol., 291, 899–911.CrossRefPubMedGoogle Scholar
  12. 12.
    Lanyi, J. K. (1999) Progress toward an explicit mechanistic model for the light-driven pump, bacteriorhodopsin, FEBS Lett., 464, 103–107.CrossRefPubMedGoogle Scholar
  13. 13.
    Kandori, A., Kanzaki, H., Miyatake, K., Hashimoto, S., Itoh, S., Tanaka, N., Miyashita, T., and Tsukada, K. (2001) A method for detecting myocardial abnormality by using a total current-vector calculated from ST-segment deviation of a magnetocardiogram signal, Med. Biol. Eng. Comp., 39, 21–28.CrossRefGoogle Scholar
  14. 14.
    Wang, J., and El-Sayed, M. A. (2001) Time-resolved Fourier transform infrared spectroscopy of the polarizable proton continua and the proton pump mechanism of bacteriorhodopsin, Biophys. J., 80, 961–971.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sanz, C., Lazarova, T., Sepulcre, F., Gonzalez-Moreno, R., Bourdelande, J. L., Querol, E., and Padros, E. (1999) Opening the Schiff base moiety of bacteriorhodopsin by mutation of the four extracellular Glu side chains, FEBS Lett., 456, 191–195.CrossRefPubMedGoogle Scholar
  16. 16.
    Oesterhelt, D., and Stoeckenius, W. (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane, Methods Enzymol., 31, 667–678.CrossRefPubMedGoogle Scholar
  17. 17.
    Nekrasova, O. V., Wulfson, A. N., Tikhonov, R. V., Yakimov, S. A., Simonova, T. N., Tagvey, A. I., Dolgikh, D. A., Ostrovsky, M. A., and Kirpichnikov, M. P. (2010) A new hybrid protein for production of recombinant bacteriorhodopsin in Escherichia coli, J. Biotech., 147, 145–150.CrossRefGoogle Scholar
  18. 18.
    Wang, J., Link, S., Heyes, C. D., and El-Sayed, M. A. (2002) Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states, Biophys. J., 83, 1557–1566.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dencher, N. A., and Heyn, M. P. (1982) Preparation and properties of monomeric bacteriorhodopsin, Meth. Enzymol., 88, 5–10.CrossRefGoogle Scholar
  20. 20.
    Kovacs, I., Hollos-Nagy, K., and Varo, G. (1995) Dark adaptation and spectral changes in Triton-X-100-treated bacteriorhodopsin, J. Photochem. Photobiol. B, 27, 21–25.CrossRefGoogle Scholar
  21. 21.
    Gonzalez-Manas, J. M., Montoya, G., RodriguezFernandez, C., Gurtubay, J. I. G., and Goni, F. M. (1990) The interaction of Triton X-100 with purple membrane: effect of light-dark adaptation, Biochim. Biophys. Acta, 1019, 167–169.CrossRefGoogle Scholar
  22. 22.
    Gergely, C., Zimanyi, L., and Varo, G. (1997) Bacteriorhodopsin intermediate spectra determined over a wide pH range, J. Phys. Chem. B, 101, 9390–9395.CrossRefGoogle Scholar
  23. 23.
    Pescitelli, G., and Woody, R. W. (2012) The exciton origin of the visible circular dichroism spectrum of bacteriorhodopsin, J. Phys. Chem. B, 116, 6751–6763.CrossRefPubMedGoogle Scholar
  24. 24.
    Brouillette, C. G., McMichens, R. B., Stern, L. J., and Khorana, H. G. (1989) Structure and thermal stability of monomeric bacteriorhodopsin in mixed phospholipid/detergent micelles, Proteins, 5, 38–46.CrossRefPubMedGoogle Scholar
  25. 25.
    Krebs, M. P., and Khorana, H. G. (1993) Mechanism of light-dependent proton translocation by bacteriorhodopsin, J. Bacteriol., 175, 1555–1560.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tsuda, M., and Ebrey, T. G. (1980) Effect of high pressure on the absorption spectrum and isomeric composition of bacteriorhodopsin, Biophys. J., 30, 149–157.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Casadio, R., Gutowitz, H., Mowery, P., Taylor, M., and Stoeckenius, W. (1980) Light-dark adaptation of bacteriorhodopsin in Triton-treated purple membrane, Biochim. Biophys. Acta, 590, 13–23.CrossRefPubMedGoogle Scholar
  28. 28.
    Dencher, N. A., Kohl, K. D., and Heyn, M. P. (1983) Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments, Biochemistry, 22, 1323–1334.CrossRefPubMedGoogle Scholar
  29. 29.
    Scherrer, P., Mathew, M. K., Sperling, W., and Stoeckenius, W. (1989) Retinal isomer ratio in dark-adapted purple membrane and bacteriorhodopsin monomers, Biochemistry, 28, 829–834.CrossRefPubMedGoogle Scholar
  30. 30.
    Song, L., Yang, D., El-Sayed, M. A., and Lanyi, J. K. (1995) Retinal isomer composition in some bacteriorhodopsin mutants under light and dark adaptation conditions, J. Phys. Chem., 99, 10052–10055.CrossRefGoogle Scholar
  31. 31.
    Milder, S. J., Thorgeirsson, T. E., Miercke, L. J. W., Stroud, R. M., and Kliger, D. S. (1991) Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin, Biochemistry, 30, 1751–1761.CrossRefPubMedGoogle Scholar
  32. 32.
    Braiman, M. S., Stern, L. J., Chao, B. H., and Khorana, H. G. (1987) Structure-function studies on bacteriorhodopsin. IV. Purification and renaturation of bacterio-opsin polypeptide expressed in Escherichia coli, J. Biol. Chem., 262, 9271–9276.PubMedGoogle Scholar
  33. 33.
    Greenhalgh, D. A., Farrens, D. L., Subramaniam, S., and Khorana, H. G. (1993) Hydrophobic amino acids in the retinal-binding pocket of bacteriorhodopsin, J. Biol. Chem., 268, 20305–20311.PubMedGoogle Scholar
  34. 34.
    Sharkov, A. V., Pakulev, A. V., Chekalin, S. V., and Matveetz, Y. A. (1985) Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy, Biochim. Biophys. Acta, 88, 94–102.CrossRefGoogle Scholar
  35. 35.
    Dobler, J., Zinth, W., Kaiser, W., and Oesterhelt, D. (1988) Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy, Chem. Phys. Lett., 144, 215–220.CrossRefGoogle Scholar
  36. 36.
    Gai, F., Hasson, K. C., McDonald, J. C., and Anfinrud, P. A. (1998) Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin, Science, 279, 1886–1891.CrossRefPubMedGoogle Scholar
  37. 37.
    Kobayashi, T., Saito, T., and Ohtani, H. (2001) Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization, Nature, 414, 531–534.CrossRefPubMedGoogle Scholar
  38. 38.
    Yabushita, A., and Kobayashi, T. (2009) Primary conformation change in bacteriorhodopsin on photoexcitation, Biophys. J., 96, 1447–1461.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wand, A., Friedman, N., Sheves, M., and Ruhman, S. (2012) Ultrafast photochemistry of light-adapted and darkadapted bacteriorhodopsin: effects of the initial retinal configuration, J. Phys. Chem. B, 116, 10444–10452.CrossRefPubMedGoogle Scholar
  40. 40.
    Govindjee, R., Balashov, S. P., and Ebrey, T. G. (1990) Quantum efficiency of the photochemical cycle of bacteriorhodopsin, Biophys. J., 58, 597–608.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ye, T., Friedman, N., Gat, Y., Atkinson, G. H., Sheves, J. M., Ottolenghi, M., and Ruhman, S. (1999) On the nature of the primary light-induced events in bacteriorhodopsin: ultrafast spectroscopy of native and C13=C14 locked pigments, J. Phys. Chem. B, 103, 5122–5130.CrossRefGoogle Scholar
  42. 42.
    Briand, J., Leonard, J., and Haacke, S. (2010) Ultrafast photo-induced reaction dynamics in bacteriorhodopsin and its Trp mutants, J. Opt., 12, 1–14.CrossRefGoogle Scholar
  43. 43.
    Mathies, R. A., Brito-Cruz, C. H., Pollard, W. T., and Shank, C. V. (1988) Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin, Science, 240, 777–779.CrossRefPubMedGoogle Scholar
  44. 44.
    Song, L., El-Sayed, M. A., and Lanyi, J. K. (1993) Protein catalysis of the retinal subpicosecond photoisomerization in the primary process of bacteriorhodopsin photosynthesis, Science, 261, 891–894.CrossRefPubMedGoogle Scholar
  45. 45.
    Reyenolds, J. A., and Stoeckenius, W. (1977) Molecular weight of bacteriorhodopsin solubilized in Triton X-100, Proc. Natl. Acad. Sci. USA, 74, 2803–2804.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pepe, I. M., and Schwemer, J. (1987) An improved HPLC method for the separation of retinaldehyde isomers from visual pigments, Photochem. Photobiol., 45, 679–687.CrossRefPubMedGoogle Scholar
  47. 47.
    Shelaev, I. V., Gostev, F. E., Mamedov, M. D., Sarkisov, O. M., Nadtochenko, V. A., Shuvalov, V. A., and Semenov, A. Yu. (2010) Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I, Biochim. Biophys. Acta, 8, 1410–1420.CrossRefGoogle Scholar
  48. 48.
    Dencher, N. A., and Heyn, M. P. (1978) Formation and properties of bacteriorhodopsin monomers in the nonionic detergents octyl-ß-D-glucoside and Triton X-100, FEBS Lett., 96, 322–326.CrossRefPubMedGoogle Scholar
  49. 49.
    Varo, G., and Lanyi, J. K. (1991) Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle, Biochemistry, 30, 5008–5015.CrossRefPubMedGoogle Scholar
  50. 50.
    Ahl, P. L., Stern, L. J., Düring, D., Mogi, T., Khorana, H. G., and Rothschild, K. J. (1988) Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy, J. Biol. Chem., 263, 13594–13601.PubMedGoogle Scholar
  51. 51.
    Hamm, P., Zurek, M., Roschinger, T., Patzelt, H., Oesterhelt, D., and Zinth, W. (1996) Femtosecond spectroscopy of the photoisomerization of the protonated Schiff base of all-trans retinal, Chem. Phys. Lett., 263, 613–621.CrossRefGoogle Scholar
  52. 52.
    Coughlan, N. J. A., Catani, K. J., Adamson, B. D., Wille, U., and Bieske, E. J. (2014) Photoisomerization action spectrum of retinal protonated Schiff base in the gas phase, J. Chem. Phys., 140, 164–307.CrossRefGoogle Scholar
  53. 53.
    Ernst, O. P., Lodowski, D. T., Elstner, M., Hegemann, P., Brown, L. S., and Kandori, H. (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev., 114, 126–163.PubMedGoogle Scholar
  54. 54.
    Hayashi, T., Matsuura, A., Sato, H., and Sakurai, M. (2012) Full-quantum chemical calculation of the absorption maximum of bacteriorhodopsin: a comprehensive analysis of the amino acid residues contributing to the opsin shift, Biophysics, 8, 115–125.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Faham, S., and Bowie, J. U. (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure, J. Mol. Biol., 316, 1–6.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. A. Smitienko
    • 1
    Email author
  • O. V. Nekrasova
    • 2
    • 3
  • A. V. Kudriavtsev
    • 1
    • 3
  • M. A. Yakovleva
    • 1
  • I. V. Shelaev
    • 4
  • F. E. Gostev
    • 4
  • D. A. Dolgikh
    • 2
    • 3
    • 5
  • I. B. Kolchugina
    • 3
  • V. A. Nadtochenko
    • 4
  • M. P. Kirpichnikov
    • 2
    • 3
  • T. B. Feldman
    • 1
    • 3
    • 5
  • M. A. Ostrovsky
    • 1
    • 3
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Lomonosov Moscow State UniversityBiological FacultyMoscowRussia
  4. 4.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  5. 5.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations