Skip to main content
Log in

Attenuation of focal adhesion kinase reduces lipopolysaccharide-induced inflammation injury through inactivation of the Wnt and NF-κB pathways in A549 cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Overall analysis and understanding of mechanisms are of great importance for treatment of infantile pneumonia due to its high morbidity and mortality worldwide. In this study, we preliminarily explored the function and mechanism of focal adhesion kinase (FAK) in regulation of inflammatory response induced by lipopolysaccharides in A549 cells. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis were used to explore the correlation of FAK expression with cell apoptosis, viability, and the inflammatory cytokine activity in A549 cells. The results showed that knockdown of FAK enhanced cell viability, suppressed apoptosis, and decreased inflammatory cytokine activity. In addition, downregulation of FAK could activate the Wnt and nuclear factor κB signaling pathways. These findings suggest that FAK might be involved in progression of infantile pneumonia and could be a new therapeutic target for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FAK:

focal adhesion kinase

IP:

infantile pneumonia

LPS:

lipopolysaccharide

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (assay)

NF-κB:

nuclear factor κB

References

  1. Wysocki, J., Sluzewski, W., Gutterman, E., Jouve, S., Moscariello, M., and Balter, I. (2016) Active hospitalbased surveillance of invasive pneumococcal disease and clinical pneumonia in infants and young children in two Polish counties, Arch. Med. Sci., 3, 629–638.

    Article  Google Scholar 

  2. Shu, L. H., Jiang-Jiang, X. U., Wang, S., Zhong, H. Q., Dong, X. Y., Jiang, K., Zhang, H. Y., Xiong, Q., Wang, C., and Sun, T. (2015) Distribution of pathogenic microorganisms and its relationship with clinical features in children with community-acquired pneumonia, Chinese J. Contemp. Pediatr., 17, 1056–1061.

    Google Scholar 

  3. Chisti, M. J., Salam, M. A., Bardhan, P. K., Faruque, A. S., Shahid, A. S., Shahunja, K. M., Das, S. K., Hossain, M. I., and Ahmed, T. (2015) Treatment failure and mortality amongst children with severe acute malnutrition presenting with cough or respiratory difficulty and radiological pneumonia, PLoS One, 10.

    Google Scholar 

  4. Leung, D. T., Das, S. K., Malek, M. A., Qadri, F., Faruque, A. S., Chisti, M. J., and Ryan, E. T. (2015) Concurrent pneumonia in children under 5 years of age presenting to a diarrheal hospital in Dhaka, Bangladesh, Am. J. Trop. Med. Hyg., 93, 895–903.

    Google Scholar 

  5. Yu, Z. W., Qian, J., Gu, X. H., Zhang, X. J., Pan, J. R., and Ju, H. L. (2015) Changes in serum inflammatory factors in wheezing infants with community-acquired pneumonia, Chinese J. Contemp. Pediatr., 17, 815–818.

    CAS  Google Scholar 

  6. Zhang, X., Wu, J., Zhang, B., and Dong, L. (2015) Potassium dehydroandrographolide succinate injection for treatment of infantile pneumonia: a systematic review and Meta-analysis, J. Trad. Chinese Med., 35, 125–133.

    Article  Google Scholar 

  7. Zhu, R., Lei, L., Zhao, L., Jie, D., Fang, W., Yu, S., Song, Q., Ding, Y., and Yuan, Q. (2015) Characteristics of the mosaic genome of a human parechovirus type 1 strain isolated from an infant with pneumonia in China, Infect. Genet. Evol., 29, 91–98.

    Article  CAS  PubMed  Google Scholar 

  8. Gomez Del Pulgar, T., Cebrian, A., Fernandez-Acenero, M. J., Borrero-Palacios, A., Puerto-Nevado, L. D., Martinez-Useros, J., Marin-Arango, J. P., Carames, C., Vega-Bravo, R., and Rodriguez-Remirez, M. (2016) Focal adhesion kinase: predictor of tumour response and risk factor for recurrence after neoadjuvant chemoradiation in rectal cancer, J. Cell. Mol. Med., 20, 1729–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uehara, K., and Uehara, A. (2016) Differentiated localizations of phosphorylated focal adhesion kinase in endothelial cells of rat splenic sinus, Cell Tissue Res., 83, 1–12.

    Google Scholar 

  10. Zheng, X., Bao, W., Yang, J., Zhang, T., Sun, D., Liang, Y., Li, S., Wang, Y., Feng, X., and Hao, H. (2016) Focal adhesion kinase directly interacts with TSC2 through its FAT domain and regulates cell proliferation in cashmere goat fetal fibroblasts, DNA Cell Biol., 9, 480–488.

    Article  Google Scholar 

  11. Troutman, S., Moleirinho, S., Kota, S., Nettles, K., Fallahi, M., Johnson, G. L., and Kissil, J. L. (2016) Crizotinib inhibits NF2-associated schwannoma through inhibition of focal adhesion kinase 1, Oncotarget, doi: 10.18632/oncotarget.10248.

    Google Scholar 

  12. Hao, Z., Shao, H., Golubovskaya, V. M., Chen, H., Cance, W., Adjei, A. A., and Dy, G. K. (2016) Efficacy of focal adhesion kinase inhibition in non-small cell lung cancer with oncogenically activated MAPK pathways, Br. J. Cancer, 2, 203–211.

    Google Scholar 

  13. Heffler, M., Golubovskaya, V. M., Dunn, K. M. B., and Cance, W. (2013) Focal adhesion kinase autophosphorylation inhibition decreases colon cancer cell growth and enhances the efficacy of chemotherapy, Cancer Biol. Ther., 14, 761–772.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Woo, J. K., Jang, Y. S., Kang, J. H., Hwang, J. I., Seong, J. K., Lee, S. J., Jeon, S., Oh, G. T., Lee, H. Y., and Oh, S. H. (2016) Ninjurin1 inhibits colitis-mediated colon cancer development and growth by suppression of macrophage infiltration through repression of FAK signaling, Oncotarget, 20, 29592–29604.

    Google Scholar 

  15. Feng, R., and Yang, S. (2016) Effects of combining erlotinib and RNA-interfered downregulation of focal adhesion kinase expression on gastric cancer, J. Int. Med. Res., 44.

    Google Scholar 

  16. Shi, R., Wang, Q., Ouyang, Y., Wang, Q., and Xiong, X. (2016) Picfeltarraenin IA inhibits lipopolysaccharideinduced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells, Oncol. Lett., 11, 1195–1200.

    PubMed  Google Scholar 

  17. Buck, C., Gallati, H., Pohlandt, F., and Bartmann, P. (1994) Increased levels of tumor necrosis factor a (TNF-a) and interleukin 1a (IL-1a) in tracheal aspirates of newborns with pneumonia, Infection, 22, 238–241.

    Article  CAS  PubMed  Google Scholar 

  18. Jodal, M., Fihn, B. M., and Sun, Y. (1990) Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF, Blood, 75, 40–47.

    Google Scholar 

  19. You, D., Xin, J., Volk, A., Wei, W., Schmidt, R., Scurti, G., Nand, S., Breuer, E. K., Kuo, P., and Breslin, P. (2015) FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells, Cell Rep., 10, 2055–2068.

    Article  CAS  PubMed  Google Scholar 

  20. Sun, C., Yuan, H., Wang, L., Wei, X., Williams, L., Krebsbach, P. H., Guan, J. L., and Liu, F. (2016) FAK promotes osteoblast progenitor cell proliferation and differentiation by enhancing Wnt signaling, J. Bone Min. Res., doi: 10.1002/jbmr.2908.

    Google Scholar 

  21. Harvey, R. D., Silberman, J., and Lonial, S. (2015) The PI3 kinase/Akt pathway as a therapeutic target in multiple myeloma, Fut. Oncol., 3, 639–647.

    Article  Google Scholar 

  22. Foster, K. A., Oster, C. G., Mayer, M. M., Avery, M. L., and Audus, K. L. (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism, Exp. Cell Res., 243, 359–366.

    Article  CAS  PubMed  Google Scholar 

  23. Uboldi, C., Bonacchi, D., Lorenzi, G., Hermanns, M. I., Pohl, C., Baldi, G., Unger, R. E., and Kirkpatrick, C. J. (2009) Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441, Part. Fibre Toxicol., 6, 1–12.

    Article  Google Scholar 

  24. Wu, J., Zhao, J., Yu, J., Zhang, W., and Huang, Y. (2015) Cylindromatosis (CYLD) inhibits Streptococcus pneumonia-induced plasminogen activator inhibitor-1 expression via interacting with TRAF-6, Biochem. Biophys. Res. Commun., 463, 942–947.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, X., Li, H., Wang, J., Guo, Y., Liu, B., Deng, X., and Niu, X. (2015) Verbascoside alleviates pneumococcal pneumonia by reducing pneumolysin oligomers, Mol. Pharmacol., 89, 376–387.

    Article  PubMed  Google Scholar 

  26. Cantais, A., Mory, O., Pillet, S., Verhoeven, P. O., Bonneau, J., Patural, H., and Pozzetto, B. (2014) Epidemiology and microbiological investigations of community-acquired pneumonia in children admitted at the emergency department of a university hospital, J. Clin. Virol., 60, 402–407.

    Article  PubMed  Google Scholar 

  27. Li, Q., Liu, L., Zhang, Q., Liu, S., Ge, D., and You, Z. (2014) Interleukin-17 indirectly promotes M2 macrophage differentiation through stimulation of COX-2/PGE2 pathway in the cancer cells, Cancer Res. Treat. Offic. J. Korean Cancer Assoc., 46, 297–306.

    CAS  Google Scholar 

  28. Ali, A., Akhund, T., Warraich, G. J., Aziz, F., Rahman, N., Urmani, F. A., Qureshi, S., Petri, W. A., Bhutta, Z., Zaidi, A. K., and Hughes, M. A. (2016) Respiratory viruses associated with severe pneumonia in children under two years old in a rural community in Pakistan, J. Med. Virol., 88, 1882–1890.

    Article  PubMed  Google Scholar 

  29. Dop, D., Gheonea, C., Stanescu, G. L., Morosanu, A. E., Diaconu, R., Niculescu, E. C., Ognean, M. L., and Niculescu, D. (2015) Aspiration pneumonia in an infant with neurological sequelae–case report, Roman. J. Morphol. Embryol., 56, 1191–1194.

    Google Scholar 

  30. Wang, L. L., Zheng, S. Y., Ren, L., Xiao, Q. Y., Long, X. R., Luo, J., Qu-Bei, L. I., Deng, Y., Xie, X. H., and Liu, E. M. (2016) Levels of surfactant proteins A and D in bronchoalveolar lavage fluid of children with pneumonia and their relationships with clinical characteristics, Chinese J. Contemp. Pediatr., 18.

    Google Scholar 

  31. Kessler, B. E., Sharma, V., Zhou, Q., Jing, X., Pike, L. A., Kerege, A. A., Sams, S. B., and Schweppe, R. E. (2016) FAK expression, not kinase activity, is a key mediator of thyroid tumorigenesis and pro-tumorigenic processes, Mol. Cancer Res., 14, 869–882.

    CAS  Google Scholar 

  32. Zaidi, A. (2015) FAK kinase activity is required for the progreßsion of c-Met/ß-catenin-driven HCC, Gene Express., 17, 79–88.

    Article  Google Scholar 

  33. Serrels, A., and Frame, M. C. (2016) FAK goes nuclear to control anti-tumor immunity–a new target in cancer immunotherapy, Oncoimmunology, 5, e1119356.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thiyagarajan, V., Lin, S. H., Chang, Y. C., and Weng, C. F. (2016) Identification of novel FAK and S6K1 dual inhibitors from natural compounds via ADMET screening and molecular docking, Biomed. Pharmacother., 80, 52–62.

    Article  CAS  PubMed  Google Scholar 

  35. Hutchinson, L. (2016) Ovarian cancer: FAK–new target for antiangiogenic therapy, Nature Rev. Clin. Oncol., 13, 328.

    Google Scholar 

  36. Ding, L., Wang, L., Sui, L., Zhao, H., Xu, X., Li, T., Wang, X., Li, W., Zhou, P., and Kong, L. (2016) Claudin-7 indirectly regulates the integrin/FAK signaling pathway in human colon cancer tissue, J. Human Genet., 61, 711–720.

    Article  CAS  Google Scholar 

  37. Zhang, R., Li, L., Yuan, L., and Zhao, M. (2015) Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation-induced cell apoptosis via sphingosine kinase 2 and FAK/AKT pathway, Exp. Mol. Pathol., 100, 51–58.

    Article  PubMed  Google Scholar 

  38. Liu, F., Kohlmeier, S., and Wang, C. (2008) Wnt signaling and skeletal development, Cell. Signal., 20, 999–1009.

    Article  CAS  PubMed  Google Scholar 

  39. Topol, L., Jiang, X., Choi, H., Garrettbeal, L., Carolan, P. J., and Yang, Y. (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent ß-catenin degradation, J. Cell Biol., 162, 899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oeckinghaus, A., Hayden, M. S., and Ghosh, S. (2011) Crosstalk in NF-κB signaling pathways, Nature Immunol., 12, 695–708.

    Article  CAS  Google Scholar 

  41. Mulero, M. C., Bigas, A., and Espinosa, L. (2013) I?Ba beyond the NF-κB dogma, Oncotarget, 4, 1550–1551.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Zhu.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 4, pp. 611-619.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-295, December 12, 2016.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, D., Cong, S. & Zhu, L.P. Attenuation of focal adhesion kinase reduces lipopolysaccharide-induced inflammation injury through inactivation of the Wnt and NF-κB pathways in A549 cells. Biochemistry Moscow 82, 446–453 (2017). https://doi.org/10.1134/S0006297917040058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917040058

Keywords

Navigation