Skip to main content
Log in

Formyl peptide receptor polymorphisms: 27 most possible ways for phagocyte dysfunction

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Formyl peptide receptors (FPRs) expressed by mammalian myeloid cells are the important part of innate immunity. They belong to the seven-transmembrane domain class of receptors coupled to heterotrimeric GTP-binding proteins. Binding of the receptor with a wide spectrum of exogenous and endogenous ligands triggers such defensive phagocyte reactions as chemotaxis, secretory degranulation, and respiratory burst, keeping a balance of inflammatory and antiinflammatory processes in the organism. The association between single nucleotide polymorphisms in the gene of FPR1 receptor resulting in disruption of the receptor structure and the development of certain pathologies accompanied with inflammation, such as aggressive periodontitis, macular degeneration, and even gastric cancer (Maney, P., and Walters, J. D. (2009) J. Periodontol., 80, 1498-1505; Liang, X. Y., et al. (2014) Eye, 28, 1502-1510; Otani, T., et al. (2011) Biochem. Biophys. Res. Commun., 405, 356-361) has been shown. In this review, we matched the missense mutation of formyl-peptide receptors with their known functional domains and classified them according to their potential significance in pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

fMLF:

N-formyl-methionyl-leucyl-phenylalanine

FPR:

formyl peptide receptor

GPCR:

G-protein coupled receptor

SNP:

single nucleotide polymorphism

References

  1. Ye, R. D., Boulay, F., Wang, J. M., Dahlgren, C., Gerard, C., Parmentier, M., Sernan, C. N., and Murphy, P. M. (2009) International union of pharmacology LXXIII: nomenclature for the formyl peptide receptor (FPR) family, Pharmacol. Rev., 61, 119–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Le, Y., Oppenheim, J. J., and Wang, J. M. (2001) Pleiotropic roles of formyl peptide receptors, Cytokine Growth Factor Rev., 12, 91–105.

    Article  CAS  PubMed  Google Scholar 

  3. Dorward, D. A., Lucas, C. D., Chapman, G. B., Haslett, C., Dhaliwal, K., and Rossi, A. G. (2015) The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation, Am. J. Pathol., 185, 1172–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rabiet, M. J., Macari, L., Dahlgren, C., and Boulay, F. (2011) N-Formyl peptide receptor 3 (FPR3) departs from the homologous FPR2/ALX receptor with regard to the major processes governing chemoattractant receptor regulation, expression at the cell surface, and phosphorylation, J. Biol. Chem., 286, 26718–26731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, Y., and Ye, D. (2013) Molecular biology for formyl peptide receptors in human diseases, J. Mol. Med., 91, 781–789.

    Article  CAS  PubMed  Google Scholar 

  6. Maney, P., and Walters, J. D. (2009) Formyl peptide receptor single nucleotide polymorphism 348T>C and its relationship to polymorphonuclear leukocyte chemotaxis in aggressive periodontitis, J. Periodontol., 80, 1498–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Otani, T., Ikeda, S., Lwin, H., Arai, T., Muramatsu, M., and Sawabe, M. (2011) Polymorphisms of the formyl peptide receptor gene (FPR1) and susceptibility to stomach cancer in 1531 consecutive autopsy cases, Biochem. Biophys. Res. Commun., 405, 356–361.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, D., Zhao, Q., and Wu, B. (2015) Structural studies of G protein-coupled receptors, Mol. Cells, 38, 836–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bylund, J., Gabl, M., Winther, M., Onnheim, K., Dahlgren, C., and Forsman, H. (2014) Turning chemoattractant receptors on and off with conventional ligands and allosteric modulators: recent advances in formyl peptide receptor signaling and regulation, Inflamm. Cell Signal., 1, 73.

    Google Scholar 

  10. Ye, R. D., Cavanagh, S. L., Quehenberger, O., Prossnitz, E. R., and Cochrane, C. G. (1992) Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor, Biochem. Biophys. Res. Commun., 184, 582–589.

    Article  CAS  PubMed  Google Scholar 

  11. Quehenberger, O., Prossnitz, E. R., Cavanagh, S. L., Cochrane, C. G., and Ye, R. D. (1993) Multiple domains of the N-formyl peptide receptor are required for high-affinity ligand binding. Construction and analysis of chimeric Nformyl peptide receptors, J. Biol. Chem., 268, 18167–18175.

    CAS  PubMed  Google Scholar 

  12. Perez, H. D., Holmes, R., Vilander, L. R., Adams, R. R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) Formyl peptide receptor chimeras define domains involved in ligand binding, J. Biol. Chem., 268, 2292–2295.

    CAS  PubMed  Google Scholar 

  13. Miettinen, H. M., Mills, J. S., Gripentrog, J. M., Dratz, E. A., Granger, B. L., and Jesaitis, A. J. (1997) The ligand binding site of the formyl peptide receptor maps in the transmembrane region, J. Immunol., 159, 4045–4054.

    CAS  PubMed  Google Scholar 

  14. Quehenberger, O., Pan, Z. K., Prossnitz, E. R., Cavanagh, S. L., Cochrane, C. G., and Ye, R. D. (1997) Identification of an N-formyl peptide receptor ligand binding domain by a gain-of-function approach, Biochem. Biophys. Res. Commun., 238, 377–381.

    Article  CAS  PubMed  Google Scholar 

  15. Mills, J. S., Miettinen, H. M., Barnidge, D., Vlases, M. J., Wimer-Mackin, S., Dratz, E. A., Sunner, J., and Jesaitis, A. J. (1998) Identification of a ligand binding site in the human neutrophil formyl peptide receptor using a site-specific fluorescent photoaffinity label and mass spectrometry, J. Biol. Chem., 273, 10428–10435.

    Article  CAS  PubMed  Google Scholar 

  16. Mills, J. S., Miettinen, H. M., Cummings, D., and Jesaitis, A. J. (2000) Characterization of the binding site on the formyl peptide receptor using three receptor mutants and analogs of Met-Leu-Phe and Met-Met-Trp-Leu-Leu, J. Biol. Chem., 275, 39012–39017.

    Article  CAS  PubMed  Google Scholar 

  17. Khlebnikov, A. I., Schepetkin, I. A., Kirpotina, L. N., Brive, L., Dahlgren, C., Jutila, M. A., and Quinn, M. T. (2012) Molecular docking of 2-(benzimidazol-2-ylthio)N-phenylacetamide-derived small-molecule agonists of human formyl peptide receptor 1, J. Mol. Model., 18, 2831–2843.

    Article  CAS  PubMed  Google Scholar 

  18. Savarese, T. M., and Fraser, C. M. (1992) In vitro mutagenesis and the search for structure–function relationships among G-protein-coupled receptors, Biochem. J., 283, 1–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bommakanti, R. K., Bokoch, G. M., Tolley, J. O., Schreiber, R. E., Siemsen, D. W., Klotz, K. N., and Jesaitis, A. J. (1992) Reconstitution of a physical complex between the N-formyl chemotactic peptide receptor and G protein. Inhibition by pertussis toxin-catalyzed ADP ribosylation, J. Biol. Chem., 267, 7576–7581.

    CAS  PubMed  Google Scholar 

  20. Bommakanti, R. K., Dratz, E. A., Siemsen, D. W., and Jesaitis, A. J. (1994) Characterization of complex formation between Gi2 and octyl glucoside solubilized neutrophil N-formyl peptide chemoattractant receptor by sedimentation velocity, Biochim. Biophys. Acta, 1209, 69–76.

    Article  CAS  PubMed  Google Scholar 

  21. Bommakanti, R. K., Dratz, E. A., Siemsen, D. W., and Jesaitis, A. J. (1995) Extensive contact between Gi2 and Nformyl peptide receptor of human neutrophils: mapping of binding sites using receptor-mimetic peptides, Biochemistry, 34, 6720–0728.

    Article  CAS  PubMed  Google Scholar 

  22. Amatruda, T. T., Dragas-Graonic, S., Holmes, R., and Perez, H. D. (1995) Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and sitedirected mutagenesis define a novel domain for interaction with G-proteins, J. Biol. Chem., 270, 28010–28013.

    Article  CAS  PubMed  Google Scholar 

  23. Miettinen, H. M., Gripentrog, J. M., Mason, M. M., and Jesaitis, A. J. (1999) Identification of putative sites of interaction between the human formyl peptide receptor and G protein, J. Biol. Chem., 274, 27934–27942.

    Article  CAS  PubMed  Google Scholar 

  24. Prossnitz, E. R., Schreiber, R. E., Bokoch, G. M., and Ye, R. D. (1995) Binding of low affinity N-formyl peptide receptors to G protein. Characterization of a novel inactive receptor intermediate, J. Biol. Chem., 270, 10686–10694.

    Article  CAS  PubMed  Google Scholar 

  25. Gripentrog, J. M., and Miettinen, H. M. (2008) Formyl peptide receptor-mediated ERK1/2 activation occurs through G (i) and is not dependent on beta-arrestin1/2, Cell. Signal., 20, 424–431.

    Article  CAS  PubMed  Google Scholar 

  26. Ali, H., Richardson, R. M., Tomhave, E. D., Didsbury, J. R., and Snyderman, R. (1993) Differences in phosphorylation of formyl peptide and C5a chemoattractant receptors correlate with differences in desensitization, J. Biol. Chem., 268, 24247–24254.

    CAS  PubMed  Google Scholar 

  27. Tardif, M., Mery, L., Brouchon, L., and Boulay, F. (1993) Agonist-dependent phosphorylation of N-formyl peptide and activation peptide from the fifth component of C (Cfa) chemoattractant receptors in differentiated HL60 cells, J. Immunol., 150, 3534–3545.

    CAS  PubMed  Google Scholar 

  28. Han, M., Gurevich, V. V., Vishnivetskiy, S. A., Sigler, P. B., and Schubert, C. (2001) Crystal structure of beta-arrestin at 1.9 Å: possible mechanism of receptor binding and membrane translocation, Structure, 9, 869–880.

    Article  CAS  PubMed  Google Scholar 

  29. Milano, S. K., Pace, H. C., Kim, Y. M., Brenner, C., and Benovic, J. L. (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis, Biochemistry, 41, 3321–3328.

    Article  CAS  PubMed  Google Scholar 

  30. Bennett, T. A., Foutz, T. D., Gurevich, V. V., Sklar, L. A., and Prossnitz, E. R. (2001) Partial phosphorylation of the N-formyl peptide receptor inhibits G protein association independent of arrestin binding, J. Biol. Chem., 276, 49195–49203.

    Article  CAS  PubMed  Google Scholar 

  31. Goodman, O. B., Jr., Krupnick, J. G., Santini, F., Gurevich, V. V., Penn, R. B., Gagnon, A. W., Keen, J. H., and Benovic, J. L. (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor, Nature, 383, 447–450.

    Article  CAS  PubMed  Google Scholar 

  32. Laporte, S. A., Miller, W. E., Kim, K. M., and Caron, M. G. (2002) Beta-arrestin/AP-2 interaction in G proteincoupled receptor internalization: identification of a betaarrestin binging site in beta 2-adaptin, J. Biol. Chem., 277, 9247–9254.

    Article  CAS  PubMed  Google Scholar 

  33. Prossnitz, E. R., Kim, C. M., Benovic, J. L., and Ye, R. D. (1995) Phosphorylation of the N-formyl peptide receptor carboxyl terminus by the G protein-coupled receptor kinase, GRK2, J. Biol. Chem., 270, 1130–1137.

    Article  CAS  PubMed  Google Scholar 

  34. Maestes, D. C., Potter, R. M., and Prossnitz, E. R. (1999) Differential phosphorylation paradigms dictate desensitization and internalization of the N-formyl peptide receptor, J. Biol. Chem., 274, 29791–29795.

    Article  CAS  PubMed  Google Scholar 

  35. Chiang, N., Fierro, I. M., Gronert, K., and Serhan, C. N. (2000) Activation of lipoxin A (4) receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation, J. Exp. Med., 191, 1197–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bena, S., Brancaleone, V., Wang, J. M., Perretti, M., and Flower, R. J. (2012) Annexin A1 interaction with the FPR2/ALX receptor. Identification of distinct domains and downstream associated signaling, J. Biol. Chem., 287, 24690–24697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stepniewski, T., and Filipek, S. (2015) Non-peptide ligand binding to the formyl peptide receptor FPR2–a comparison to peptide ligand binding modes, Bioorg. Med. Chem., 23, 4072–4081.

    Article  CAS  PubMed  Google Scholar 

  38. Fujita, H., Kato, T., Watanabe, N., Takahashi, T., and Kitagawa, S. (2011) Stimulation of human formyl peptide receptors by calpain inhibitors: homology modeling of receptors and ligand docking simulation, Arch. Biochem. Biophys., 516, 121–127.

    Article  CAS  PubMed  Google Scholar 

  39. He, H. Q., Troksa, E. L., Caltabiano, G., Pardo, L., and Ye, R. D. (2014) Structural determinants for the interaction of formyl peptide receptor 2 with peptide ligands, J. Biol. Chem., 289, 2295–306.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, H. Y., Kim, S. D., Shim, J. W., Kim, H. J., Kwon, J. Y., Kim, J. M., Baek, S. H., Park, J. S., and Bae, Y. S. (2010) Activation of human monocytes by a formyl peptide receptor 2-derived pepducin, FEBS Lett., 584, 4102–4108.

    Article  CAS  PubMed  Google Scholar 

  41. Covic, L., Gresser, A. L., Talavera, J., Swift, S., and Kuliopulos, A. (2002) Activation and inhibition of G protein-coupled receptors by cell-penetrating membranetethered peptides, Biochemistry, 99, 643–648.

    CAS  Google Scholar 

  42. Forsman, H., Andreasson, E., Karlsson, J., Boulay, F., Rabiet, M. J., and Dahlgren, C. (2012) Selective peptides descending from a PIP2 profile of formyl peptide receptor 2 structural characterization and inhibitory-binding domain of gelsolin, J. Immunol., 189, 629–637.

    Article  CAS  PubMed  Google Scholar 

  43. Gehret, A. U., and Hinkle, P. M. (2010) Importance of regions outside the cytoplasmic tail of G-protein-coupled receptors for phosphorylation and dephosphorylation, Biochem. J., 428, 235–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schreiber, R. E., Prossnitz, E. R., Ye, R. D., Cochrane, C. G., and Bokoch, G. M. (1994) Domains of the human neutrophil N-formyl peptide receptor involved in G protein coupling: mapping with receptor-derived peptides, J. Biol. Chem., 269, 326–331.

    CAS  PubMed  Google Scholar 

  45. Kang, Y., Taddeo, B., Varai, G., Varga, J., and Fiore, S. (2000) Mutations of serine 236–237 and tyrosine 302 residues in the human lipoxin A4 receptor intracellular domains result in sustained signaling, Biochemistry, 39, 13551–13557.

    Article  CAS  PubMed  Google Scholar 

  46. Thompson, D., McArthur, S., Hislop, J. N., Flower, R. J., and Perretti, M. (2014) Identification of a novel recycling sequence in the C-tail of FPR2/ALX receptor. Association with cell protection from apoptosis, J. Biol. Chem., 289, 36166–36178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malech, H. L., Gardner, J. P., Heiman, D. F., and Rosenzweig, S. A. (1985) Asparagine-linked oligosaccharides on formyl peptide chemotactic receptors of human phagocytic cells, J. Biol. Chem., 260, 2509–2514.

    CAS  PubMed  Google Scholar 

  48. Mery, L., and Boulay, F. (1994) The NH2-terminal region of C5aR but not that of FPR is critical for both protein transport and ligand binding, J. Biol. Chem., 269, 3457–3463.

    CAS  PubMed  Google Scholar 

  49. Benachour, H., Zaiou, M., Herbeth, B., Lambert, D., Lamont, J. V., Pfister, M., Siest, G., Tiret, L., Blankenberg, S., Fitzgerald, P. S., and Visvikis-Siest, S. (2009) Human formyl peptide receptor 1 (FPR1) c.32C>T SNP is associated with decreased soluble E-selectin levels, Fut. Med. Pharmacogenom., 10, 951–959.

    Article  CAS  Google Scholar 

  50. Shamieh, S. E., Herbeth, B., Azimi-Nezhad, M., Benachour, H., Masson, C., and Visvikis-Siest, S. (2012) Human formyl peptide receptor 1 C32T SNP interacts with age and is associated with blood pressure levels, Clin. Chim. Acta, 413, 34–38.

    Article  PubMed  Google Scholar 

  51. Lala, A., Gwinn, M., and De Nardin, E. (1999) Human formyl peptide receptor function role of conserved and nonconserved charged residues, Eur. J. Biochem., 264, 495–499.

    Article  CAS  PubMed  Google Scholar 

  52. Liang, X. Y., Chen, L. J., Ng, T. K., Tuo, J., Gao, J. L., Tam, P. S., Lai, T. Y., Chan, C. C., and Pang, C. P. (2014) FPR1 interacts with CFH, HTRA1 and smoking in exudative age-related macular degeneration and polypoidal choroidal vasculopathy, Eye, 28, 1502–1510.

    CAS  PubMed  Google Scholar 

  53. Zhang, Y., Syed, R., Uygar, C., Pallos, D., Gorry, M. C., Firatli, E., Cortelli, J. R., VanDyke, T. E., Hart, P. S., Feingold, E., and Hart, T. C. (2003) Evaluation of human leukocyte N-formyl peptide receptor (FPR1) SNPs in aggressive periodontitis patients, Genes Immun., 4, 22–29.

    Article  PubMed  Google Scholar 

  54. Jones, B. E., Miettinen, H. M., Jesaitis, A. J., and Mills, J. S. (2003) Mutations of F110 and C126 of the formyl peptide receptor interfere with G-protein coupling and chemotaxis, J. Periodontol., 74, 475–484.

    Article  CAS  PubMed  Google Scholar 

  55. Wenzel-Seifert, K., and Seifert, R. (2003) Functional differences between human formyl peptide receptor isoforms 26, 98, and G6, Naunyn Schmiedebergs Arch. Pharmacol., 367, 509–515.

    Article  CAS  PubMed  Google Scholar 

  56. Gunji, T., Onouchi, Y., Nagasawa, T., Katagiri, S., Watanabe, H., Kobayashi, H., Arakawa, S., Noguchi, K., Hata, A., Izumi, Y., and Ishikawa, I. (2007) Functional polymorphisms of the FPR1 gene and aggressive periodontitis in Japanese, Biochem. Biophys. Res. Commun., 364, 7–13.

    Article  CAS  PubMed  Google Scholar 

  57. Zhou, C., Zhou, Y., Wang, J., Feng, Y., Wang, H., Xue, J., Chen, Y., Ye, R. D., and Wang, M. W. (2013) V101L of human formyl peptide receptor 1 (FPR1) increases receptor affinity and augments the antagonism mediated by cyclosporins, Biochem. J., 451, 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seifert, R., and Wenzel-Seifert, K. (2001) Defective Gi protein coupling in two formyl peptide receptor mutants associated with localized juvenile periodontitis, J. Biol. Chem., 276, 42043–42049.

    Article  CAS  PubMed  Google Scholar 

  59. Potter, R. M., Maestas, D. C., Cimino, D. F., and Prossnitz, E. R. (2006) Regulation of N-formyl peptide receptor signaling and trafficking by individual carboxylterminal serine and threonine residues, J. Immunol., 176, 5418–5425.

    Article  CAS  PubMed  Google Scholar 

  60. Sahagun-Ruiz, A., Colla, J. S., Juhn, J., Gao, J. L., Murphy, P. M., and McDermott, D. H. (2001) Contrasting evolution of the human leukocyte N-formyl peptide receptor subtypes FPR and FPRL1R, Genes Immun., 2, 335–342.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Gabdoulkhakova.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 4, pp. 587-600.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skvortsov, S.S., Gabdoulkhakova, A.G. Formyl peptide receptor polymorphisms: 27 most possible ways for phagocyte dysfunction. Biochemistry Moscow 82, 426–437 (2017). https://doi.org/10.1134/S0006297917040034

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917040034

Keywords

Navigation