Skip to main content

Advertisement

Log in

Role of proton pumps in tumorigenesis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

One of the differences between normal and cancer cells is lower pH of the extracellular space in tumors. Low pH in the extracellular space activates proteases and stimulates tumor invasion and metastasis. Tumor cells display higher level of the HIF1α transcription factor that promotes cell switch from mitochondrial respiration to glycolysis. The terminal product of glycolysis is lactate. Lactate formation from pyruvate is catalyzed by the specific HIF1α-dependent isoform of lactate dehydrogenase A. Because lactate accumulation is deleterious for the cell, it is actively exported by monocarboxylate transporters. Lactate is cotransported with proton, which acidifies the extracellular space. Another protein that contributes to proton concentration increase in the extracellular space is tumor-specific HIF1α-dependent carbonic anhydrase IX, which generates a proton in the reaction between carbon dioxide and water. The activity of Na+/H+ exchanger (another protein pump) is stimulated by stress factors (e.g. osmotic shock) and proliferation stimuli. This review describes the mechanisms of proton pump activation and reviews results of studies on effects of various proton pump inhibitors on tumor functioning and growth in cell culture and in vivo. The prospects of combined application of proton pump inhibitors and cytostatics in cancer therapy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, K. A., Roth, R. A., and LaPres, J. J. (2007) Hypoxia, drug therapy and toxicity, Pharmacol. Ther., 13, 229–463.

    Article  CAS  Google Scholar 

  2. Rankin, E. B., and Giaccia, A. J. (2016) Hypoxic control of metastasis, Science, 352, 175–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, S. H., Lee, M. Y., and Han, H. J. (2008) Short-period hypoxia increases mouse embryonic stem cell proliferation through cooperation of arachidonic acid and PI3K/Akt signaling pathways, Cell Prolif., 41, 230–247.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, T., Zhang, C. P., Liu, Z. H., Wu, L. Y., Huang, X., Wu, H. T., Xiong, L., Wang, X., Wang, X. M., Zhu, L. L., and Fan, M. (2008) Hypoxia-driven proliferation of embryonic neural stem/progenitor cells–role of hypoxia-inducible transcription factor-1alpha, FEBS J., 275, 1824–1834.

    Article  CAS  PubMed  Google Scholar 

  5. Di Carlo, A., De Mori, R., Martelli, F., Pompilio, G., Capogrossi, M. C., and Germani, A. (2004) Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation, J. Biol. Chem., 279, 16332–16338.

    Article  PubMed  CAS  Google Scholar 

  6. Lin, Q., Lee, Y. J., and Yun, Z. (2006) Differentiation arrest by hypoxia, J. Biol. Chem., 281, 30678–30683.

    Article  CAS  PubMed  Google Scholar 

  7. Krishnamachary, B., Berg-Dixon, S., Kelly, B., Agani, F., Feldser, D., Ferreira, G., Iyer, N., LaRusch, J., Pak, B., Taghavi, P., and Semenza, G. (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1, Cancer Res., 63, 1138–1143.

    CAS  PubMed  Google Scholar 

  8. Robertson, S. E., Weaver, V. M., and Simon, M. C. (2005) Hypoxia-inducible factor regulates avß3 integrin cell surface expression, Mol. Biol. Cell, 16, 1901–1912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Piret, J. P., Minet, E., Cosse, J. P., Ninane, N., Debacq, C., Raes, M., and Michiels, C. (2005) Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxideinduced apoptosis, J. Biol. Chem., 280, 9336–9344.

    Article  CAS  PubMed  Google Scholar 

  10. Brahimi-Horn, M. C., and Pouyssegur, J. (2007) Oxygen, a source of life and stress, FEBS Lett., 581, 3582–3591.

    Article  CAS  PubMed  Google Scholar 

  11. Comerford, K. M., Wallace, T. J., Karhausen, J., Louis, N. A., Montalto, M. C., and Colgan, S. P. (2002) Hypoxiainducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene, Cancer Res., 62, 3387–3394.

    CAS  PubMed  Google Scholar 

  12. Li, D. W., Dong, P., Wang, F., Chen, X. W., Xu, C. Z., and Zhou, L. (2013) Hypoxia induced multidrug resistance of laryngeal cancer cells via hypoxia-inducible factor-1a, Asian Pac. J. Cancer Prev., 14, 4853–4858.

    Article  PubMed  Google Scholar 

  13. Henegan, J. C., Jr., and Gomez, C. R. (2016) Heritable cancer syndromes related to the hypoxia pathway, Front. Oncol., doi: 10.3389/fonc.2016.00068.

    Google Scholar 

  14. Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., Pan, Y., Simon, M. C., Thompson, C. B., and Gottlieb, E. (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIFalpha prolyl hydroxylase, Cancer Cell, 7, 77–85.

    Article  CAS  PubMed  Google Scholar 

  15. Nowicki, S., and Gottlieb, E. (2015) Oncometabolites: tailoring our genes, FEBS J., 282, 2796–2805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai, F., Liu, Q., Liu, X., Ji, M., Xie, P., and Che, X. (2016) LXY6090–a novel manassantin A derivative–limits breast cancer growth through hypoxia-inducible factor-1 inhibition, Onco Targets Ther., 9, 3829–3840.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang, C. M., and Yu, J. (2013) Hypoxia-inducible factor-1 as a therapeutic target in cancer, J. Gastroenterol. Hepatol., 28, 401–405.

    Article  CAS  PubMed  Google Scholar 

  18. Kolobova, E., Tuganova, A., Boulatnikov, I., and Popov, K. M. (2001) Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites, Biochem. J., 358, 69–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hitosugi, T., Fan, J., Chung, T. W., Lythgoe, K., Wang, X., Xie, J., Ge, Q., Gu, T. L., Polakiewicz, R. D., Roesel, J. L., Chen, G. Z., Boggon, T. J., Lonial, S., Fu, H., Khuri, F. R., Kang, S., and Chen, J. (2011) Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism, Mol. Cell, 44, 864–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, J. W., Tchernyshyov, I., Semenza, G. L., and Dang, C. V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia, Cell. Metab., 3, 177–185.

    Article  PubMed  CAS  Google Scholar 

  21. Wigfield, S. M., Winter, S. C., Giatromanolaki, A., Taylor, J., Koukourakis, M. L., and Harris, A. L. (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer, Br. J. Cancer, 98, 1975–1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kroemer, G., and Pouyssegur, J. (2008) Tumor cell metabolism: cancer’s Achilles’ heel, Cancer Cell, 13, 472–482.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, W., Zhang, S.-L., Hu, X., and Tam, K. Y. (2015) Targeting tumor metabolism for cancer treatment: is pyruvate dehydrogenase kinases (PDKs) a viable anticancer target? Int. J. Biol. Sci., 11, 1390–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, H., Forbes, R. A., and Verma, A. (2002) Hypoxiainducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis, J. Biol. Chem., 277, 23111–23115.

    Article  CAS  PubMed  Google Scholar 

  25. Porporato, P. E., Dhup, S., Dadhich, R. K., Copetti, T., and Sonveaux, P. (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review, Front. Pharmacol., 25, 1–18.

    Google Scholar 

  26. Valvona, C. J., Fillmore, H. L., Nunn, P. B., and Pilkington, G. J. (2016) The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor, Brain Pathol., 26, 3–17.

    Article  CAS  PubMed  Google Scholar 

  27. Lu, H., Dalgard, C. L., Mohyeldin, A., McFate, T., Tait, A. S., and Verma, A. (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1, J. Biol. Chem., 280, 41928–41939.

    Article  CAS  PubMed  Google Scholar 

  28. Koukourakis, M. I., Giatromanolaki, A., Simopoulos, C., Polychronidis, A., and Sivridis, E. (2005) Lactate dehydrogenase 5 (LDH5) relates to upregulated hypoxia inducible factor pathway and metastasis in colorectal cancer, Clin. Exp. Metastasis, 22, 25–30.

    Article  CAS  PubMed  Google Scholar 

  29. Koukourakis, M. I., Giatromanolaki, A., and Sivridis, E. (2003) Lactate dehydrogenase-5 (LDH-5) over expression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis, Br. J. Cancer, 89, 877–885.

    CAS  Google Scholar 

  30. Leiblich, A., Cross, S. S., Catto, J. W., Phillips, J. T., Leung, H. Y., Hamdy, F. C., and Rehman, I. (2006) Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer, Oncogene, 25, 2953–2960.

    Article  CAS  PubMed  Google Scholar 

  31. Fantin, V. R., St-Pierre, J., and Leder, P. (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance, Cancer Cell, 9, 425–434.

    Article  CAS  PubMed  Google Scholar 

  32. Yao, F., Zhao, T., Zhong, C., Zhu, J., and Zhao, H. (2013) LDHA is necessary for the tumorigenicity of esophageal squamous cell carcinoma, Tumour Biol., 34, 25–31.

    Article  CAS  PubMed  Google Scholar 

  33. Merkle, S., Favor, J., Graw, J., Hornhardt, S., and Pretsch, W. (1992) Hereditary lactate dehydrogenase A-subunit deficiency as cause of early postimplantation death of homozygotes in Mus musculus, Genetics, 131, 413–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, W., Zhang, H., Chang, G., Xie, Z., Wang, H., Ma, L., Han, Z., Li, Q., and Pang, T. (2014) Decreased intracellular pH induced by cariporide differentially contributes to human umbilical cord-derived mesenchymal stem cells differentiation, Cell. Physiol. Biochem., 33, 185–194.

    Article  CAS  PubMed  Google Scholar 

  35. Maciolek, J. A., Pasternak, J. A., and Wilson, H. L. (2014) Metabolism of activated T lymphocytes, Curr. Opin. Immunol., 27, 7436–7438.

    Article  CAS  Google Scholar 

  36. Frauwirth, K. A., and Thompson, C. B. (2004) Regulation of T lymphocyte metabolism, J. Immunol., 172, 4661–4665.

    Article  CAS  PubMed  Google Scholar 

  37. Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., Kunz-Schughart, L., Andreesen, R., Krause, S. W., and Kreutz, M. (2007) Inhibitory effect of tumor cell derived lactic acid on human T cells, Blood, 109, 3812–3819.

    Article  CAS  PubMed  Google Scholar 

  38. Pinheiro, C., Longatto-Filho, A., Azevedo-Silva, J., Casal, M., Schmitt, F. C., and Baltazar, F. (2012) Role of monocarboxylate transporters in human cancers: state of the art, J. Bioenerg. Biomembr., 44, 127–139.

    Article  CAS  PubMed  Google Scholar 

  39. Lambert, C. A., Colige, A. C., Mineur, P., Noël, A., Frankenne, F., Foidart, J. M., Baba, M., Hata, R., Miyazaki, K., and Tsukuda, M. (2005) Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling, J. Biol. Chem., 280, 10938–10944.

    Article  PubMed  CAS  Google Scholar 

  40. Deryugina, E. L., and Quigley, J. P. (2012) Cell surface remodeling by plasmin: a new function for an old enzyme, J. Biomed. Biotechnol., Article ID564259.

    Google Scholar 

  41. Rofstad, E. K., Mathiesen, B., Kindem, K., and Galappathi, K. (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice, Cancer Res., 66, 6699–6707.

    Article  CAS  PubMed  Google Scholar 

  42. Ben-Haim, S., and Ell, P. (2009) 18F-FDG PET and PET/CT in the evaluation of cancer treatment response, J. Nucl. Med., 50, 88–99.

    Article  PubMed  Google Scholar 

  43. Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H. H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J. M., Sloane, B. F., Johnson, J., Gatenby, R. A., and Gillies, R. J. (2013) Acidity generated by the tumor microenvironment drives local invasion, Cancer Res., 73, 1524–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown, J. M., and Wilson, W. R. (2004) Exploiting tumor hypoxia in cancer treatment, Nat. Rev. Cancer, 4, 437–447.

    Article  CAS  PubMed  Google Scholar 

  45. Masoud, G. N., and Li, W. (2015) HIF-1a pathway: role, tregulation and intervention for cancer therapy, cta Pharm. Sin. B5, 378–389.

    Article  Google Scholar 

  46. Rauch, C. (2009) Toward a mechanical control of drug delivery. On the relationship between Lipinski’s 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: a comparison to published data, Eur. Biophys. J., 38, 829–846.

    Article  CAS  PubMed  Google Scholar 

  47. Raghunand, N., He, X., Van Sluis, R., Mahoney, B., Baggett, B., Taylor, C. W., Paine-Murrieta, G., Roe, D., Bhujwalla, Z. M., and Gillies, R. J. (1999) Enhancement of chemotherapy by manipulation of tumour pH, Br. J. Cancer, 80, 1005–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Masoud, G. N., Wang, J., Chen, J., Miller, D., and Li, W. (2015) Design, synthesis and biological evaluation of novel HIF1a inhibitors, Anticancer Res., 35, 3849–3859.

    CAS  PubMed  Google Scholar 

  49. Halestrap, A. P. (2012) The monocarboxylate transporter family–structure and functional characterization, IUBMB Life, 64, 1–9.

    Article  CAS  PubMed  Google Scholar 

  50. Halestrap, A. P., and Meredith, D. (2004) C16 gene family–from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond, Pflug. Arch., 447, 619–628.

    Article  CAS  Google Scholar 

  51. Brahimi-Horn, M. C., Bellot, G., and Pouyssegur, J. (2011) Hypoxia and energetic tumour metabolism, Curr. Opin. Genet. Dev., 21, 67–72.

    Article  CAS  PubMed  Google Scholar 

  52. Ullah, M. S., Davies, A. J., and Halestrap, A. P. (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alphadependent mechanism, J. Biol. Chem., 281, 9030–9037.

    Article  CAS  PubMed  Google Scholar 

  53. Halestrap, A. P. (2013) The SLC16 gene family–structure, role and regulation in health and disease, Mol. Asp. Med., 34, 337–349.

    Article  CAS  Google Scholar 

  54. Draoui, N., and Feron, O. (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments, Dis. Model. Mech., 4, 727–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kirk, P., Wilson, M. C., Heddle, C., Brown, M. H., Barclay, A. N., and Halestrap, A. P. (2000) CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression, EMBO J., 19, 3896–3904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilson, M. C., Meredith, D., Fox, J. E., Manoharan, C., Davies, A. J., and Halestrap, A. P. (2005) Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4, the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70), J. Biol. Chem., 280, 27213–27221.

    Article  CAS  PubMed  Google Scholar 

  57. Nabeshima, K., Iwasaki, H., Koga, K., Hojo, H., Suzumiya, J., and Kikuchi, M. (2006) Emmprin (basigin/CD147): matrix metallo-proteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression, Pathol. Int., 56, 359–367.

    Article  CAS  PubMed  Google Scholar 

  58. Dimmer, K. S., Friedrich, B., Lang, F., Deitmer, J. W., and Broer, S. (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells, Biochem. J., 350, 219–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brooks, G. A. (2009) Cell–cell and intracellular lactate shuttles, J. Physiol., 587, 5591–5600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baltazar, F., Pinheiro, C., Morais-Santos, F., AzevedoSilva, J., Queiros, O., Preto, A., and Casal, M. (2014) Monocarboxylate transporters as targets and mediators in cancer therapy response, Histopathology, 29, 1511–1524.

    CAS  Google Scholar 

  61. Pertega-Gomes, N., and Baltazar, F. (2014) Lactate transporters in the context of prostate cancer metabolism: what do we know? Int. J. Mol. Sci., 15, 18333–18348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Conde, V., Oliveira, P. F., Nunes, A. R., Rocha, C. S., Ramalhosa, E., Pereira, J. A., Alves, M. G., and Silva, B. M. (2015) The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism, Exp. Cell. Res., 335, 91–98.

    Article  CAS  PubMed  Google Scholar 

  63. Pertega-Gomes, N., Felisbino, S., Massie, C. E., Vizcaino, J. R., Coelho, R., Sandi, C., Simoes-Sousa, S., Jurmeister, S., Ramos-Montoya, A., Asim, M., Tran, M., Oliveira, E., Lobo da Cunha, A., Maximo, V., Baltazar, F., Neal, D. E., and Fryer, L. G. (2015) A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy, J. Pathol., 236, 517–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Choi, J. W., Kim, Y., Lee, J. H., and Kim, Y. S. (2014) Prognostic significance of lactate/proton symporters MCT1, MCT4, and their chaperone CD147 expressions in urothelial carcinoma of the bladder, Urology, 84, e9–e15.

    Article  Google Scholar 

  65. Pinheiro, C., Longatto-Filho, A., Scapulatempo, C., Ferreira, L., Martins, S., Pellerin, L., Rodrigues, M., Alves, V. A., Schmitt, F., and Baltazar, F. (2008) Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas, Virch. Arch., 452, 139–146.

    Article  CAS  Google Scholar 

  66. Pinheiro, C., Longatto-Filho, A., Ferreira, L., Pereira, S. M., Etlinger, D., Moreira, M. A., Jube, L. F., Queiroz, G. S., Schmitt, F., and Baltazar, F. (2008) Increasing expression of monocarboxylate transporters 1 and 4 along progression to invasive cervical carcinoma, Int. J. Gynecol. Pathol., 27, 568–574.

    Article  PubMed  Google Scholar 

  67. Doyen, J., Trastour, C., Ettore, F., Peyrottes, I., Toussant, N., Gal, J., Ilc, K., Roux, D., Parks, S. K., Ferrero, J. M., and Pouyssegur, J. (2014) Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome, Biochem. Biophys. Res. Commun., 451, 54–61.

    Article  CAS  PubMed  Google Scholar 

  68. Koukourakis, M. I., Giatromanolaki, A., Bougioukas, G., and Sivridis, E. (2007) Lung cancer: a comparative study of metabolism related protein expression in cancer cells and tumor-associated stroma, Cancer Biol. Ther., 6, 1476–1479.

    Article  CAS  PubMed  Google Scholar 

  69. Pinheiro, C., Reis, R. M., Ricardo, S., Longatto-Filho, A., Schmitt, F., and Baltazar, F. (2010) Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44, J. Biomed. Biotechnol., 427694.

    Google Scholar 

  70. Morais-Santos, F., Granja, S., Miranda-Goncalve, V., Moreira, A. H., Queiros, S., Vilaca, J. L., Schmitt, F. C., Longatto-Filho, A., Paredes, J., Baltazar, F., and Pinheiro, C. (2015) Targeting lactate transport suppresses in vivo breast tumour growth, Oncotarget, 6, 9177–9189.

    Article  Google Scholar 

  71. Morais-Santos, F., Miranda-Goncalves, V., Pinheiro, S., Vieira, A. F., Paredes, J., Schmitt, F. C., Baltazar, F., and Pinheiro, C. (2013) Differential sensitivities to lactate transport inhibitors of breast cancer cell lines, Endocrin. Relat. Cancer, 21, 27–38.

    Article  CAS  Google Scholar 

  72. Mathupala, S. P., Parajuli, P., and Sloan, A. E. (2004) Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study, Neurosurgery, 55, 1410–1419.

    Article  PubMed  Google Scholar 

  73. Colen, C. B., Shen, Y., Ghoddoussi, F., Yu, P., Francis, T. B., Koch, B. J., Monterey, M. D., Galloway, M. P., Sloan, A. E., and Mathupala, S. P. (2011) Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study, Neoplasia, 13, 620–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O., and Dewhirst, M. W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice, J. Clin. Invest., 118, 3930–3942.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Le Floch, R., Chiche, J., Marchiq, I., Naiken, T., Ilc, K., Murray, C. M., Critchlow, S. E., Roux, D., Simon, M. P., and Pouyssegur, J. (2011) CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors, Proc. Natl. Acad. Sci. USA, 108, 16663–16668.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Marchiq, I., Le Floch, R., Roux, D., Simon, M. P., and Pouyssegur, J. (2015) Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin, Cancer Res., 75, 171–180.

    Article  CAS  PubMed  Google Scholar 

  77. Polanski, R., Hodgkinson, C. L., Fusi, A., Nonaka, D., Priest, L., Kelly, P., Trapani, F., Bishop, P. W., White, A., Critchlow, S. E., Smith, P. D., Blackhall, F., Dive, C., and Morrow, C. J. (2014) Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer, Clin. Cancer Res., 20, 926–937.

    Article  CAS  PubMed  Google Scholar 

  78. Bola, B. M., Chadwick, A. L., Michopoulos, F., Blount, K. G., Telfer, B. A., Williams, K. J., Smith, P. D., Critchlow, S. E., and Stratford, I. J. (2014) Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport, Mol. Cancer Ther., 13, 2805–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. A phase I trial of AZD3965 in patients with advanced cancer; https://clinicaltrials.gov; Identifier: NCT01791595.

  80. Draoui, N., Schicke, O., Seront, E., Bouzin, C., Sonveaux, P., Riant, O., and Feron, O. (2014) Antitumor activity of 7aminocarboxycoumarin derivatives, a new class of potent inhibitors of lactate influx but not efflux, Mol. Cancer Ther., 13, 1410–1418.

    Article  CAS  PubMed  Google Scholar 

  81. Mahon, B. P., Pinard, M. A., and McKenna, R. (2015) Targeting carbonic anhydrase IX activity and expression, Molecules, 20, 2323–2348.

    Article  PubMed  CAS  Google Scholar 

  82. Pastorekova, S., Parkkila, S., Parkkila, A. K., Opavsky, R., Zelnik, V., Saarnio, J., and Pastorek, J. (1997) Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts, Gastroenterology, 112, 398–408.

    Article  CAS  PubMed  Google Scholar 

  83. Liao, S. Y., Lerman, M. I., and Stanbridge, E. J. (2009) Expression of transmembrane carbonic anhydrases, CAIX and CAXII, in human development, BMC Dev Biol., 9, 22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Karhumaa, P., Parkkila, S., Tureci, O., Waheed, A., Grubb, J. H., Shah, G., Parkkila, A., Kaunisto, K., Tapanainen, J., Sly, W. S., and Rajaniemi, H. (2000) Identification of carbonic anhydrase XII as the membrane isozyme expressed in the normal human endometrial epithelium, Mol. Hum. Reprod., 6, 68–74.

    Article  CAS  PubMed  Google Scholar 

  85. Hynninen, P., Hamalainen, J. M., Pastorekova, S., Pastorek, J., Waheed, A., Sly, W. S., Tomas, E., Kirkinen, P., and Parkkila, S. (2004) Transmembrane carbonic anhydrase isozymes IX and XII in the female mouse reproductive organs, Reprod. Biol. Endocrinol., 2, 73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Parkkila, S., Parkkila, A. K., Saarnio, J., Kivela, J., Karttunen, T. J., Kaunisto, K., Waheed, A., Sly, W. S., Tureci, O., Virtanen, I., and Rajaniemi, H. (2000) Expression of the membrane-associated carbonic anhydrase isozyme XII in the human kidney and renal tumors, J. Histochem. Cytochem., 48, 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  87. Kivela, A. J., Parkkila, S., Saarnio, J., Karttunen, T. J., Kivela, J., Parkkila, A. K., Pastorekova, S., Pastorek, J., Waheed, A., Sly, W. S., and Rajaniemi, H. (2000) Expression of transmembrane carbonic anhydrase isoenzymes IX and XII in normal human pancreas and pancreatic tumours, Histochem. Cell. Biol., 114, 197–204.

    CAS  PubMed  Google Scholar 

  88. Liao, S. Y., Ivanov, S., Ivanova, A., Ghosh, S., Cote, M. A., Keefe, K., Coca-Prados, M., Stanbridge, E. J., and Lerman, M. I. (2003) Expression of cell surface transmembrane carbonic anhydrase genes CA9 and CA12 in the human eye: overexpression of CA12 (CAXII) in glaucoma, J. Med. Genet., 40, 257–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hilvo, M., Baranauskiene, L., Salzano, A. M., Scaloni, A., Matulis, D., Innocenti, A., Scozzafava, A., Monti, S. M., Di Fiore, A., De Simone, G., Lindfors, M., Janis, J., Valjakka, J., Pastorekova, S., Pastorek, J., Kulomaa, M. S., Nordlund, H. R., Supuran, C. T., and Parkkila, S. (2008) Biochemical characterization of CAIX, one of the most active carbonic anhydrase isozymes, J. Biol. Chem., 283, 27799–27809.

    Article  CAS  PubMed  Google Scholar 

  90. Gorbatenko, C. W., Olesen, E., Boedtkjer, S., and Pedersen, F. (2014) Regulation and roles of bicarbonate transporters in cancer, Front. Physiol., 5, doi: 10.3389/fphys.2014.00130.

    Google Scholar 

  91. Lou, Y., McDonald, P. C., Oloumi, A., Chia, S., Ostlund, C., Ahmadi, A., Kyle, A., Leung, S., Huntsman, D., Clarke, B., Sutherland, B. W., Waterhouse, D., Bally, M., Roskelley, C., Overall, C. M., Minchinton, A., Pacchiano, F., Carta, F., Scozzafava, A., Touisni, N., Winum, J. Y., Supuran, C. T., and Dedhar, S. (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors, Cancer Res., 71, 3364–3376.

    Article  CAS  PubMed  Google Scholar 

  92. Pacchiano, F., Carta, F., McDonald, P. C., Lou, Y., Vullo, D., Scozzafava, A., Dedhar, S., and Supuran, C. T. (2011) Ureidosubstituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis, J. Med. Chem., 54, 1896–1902.

    Article  CAS  PubMed  Google Scholar 

  93. Touisni, N., Maresca, A., McDonald, P. C., Lou, Y., Scozzafava, A., Dedhar, S., Winum, J. Y., and Supuran, C. T. (2011) Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors, J. Med. Chem., 54, 8271–8277.

    Article  CAS  PubMed  Google Scholar 

  94. Dubois, L., Peeters, S., Lieuwes, N. G., Geusens, N., Thiry, A., Wigfield, S., Carta, F., McIntyre, A., Scozzafava, A., Dogne, J. M., Supuran, C. T., Harris, A. L., Masereel, B., and Lambin, P. (2011) Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation, J. Eur. Soc. Ther. Radiol. Oncol., 99, 424–431.

    Article  CAS  Google Scholar 

  95. Dubois, L. J., Niemans, R., Van Kuijk, S. J., Panth, K. M., Parvathaneni, N. K., Peeters, S. G., Zegers, C. M., Rekers, N. H., Van Gisbergen, M. W., Biemans, R., Lieuwes, N. G., Spiegelberg, L., Yaromina, A., Winum, J. Y., Vooijs, M., and Lambin, P. (2015) New ways to image and target tumour hypoxia and its molecular responses, Radiother. Oncol., 116, 352–357.

    Article  CAS  PubMed  Google Scholar 

  96. Baumgartner, M., Patel, H., and Barber, D. L. (2004) Na+/H+ exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes, Am. J. Physiol. Cell. Physiol., 287, C844–850.

    Article  CAS  PubMed  Google Scholar 

  97. Meima, M. E., Mackley, J. R., and Barber, D. L. (2007) Beyond ion translocation: structural functions of the sodium-hydrogen exchanger isoform-1, Curr. Opin. Nephrol. Hypertens., 16, 365–372.

    Article  CAS  PubMed  Google Scholar 

  98. Slepkov, E. R., Rainey, J. K., Sykes, B. D., and Fliegel, L. (2007) Structural and functional analysis of the Na+/H+ exchanger, Biochem. J., 401, 623–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Boedtkjer, E., Bunch, L., and Pedersen, S. F. (2012) Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: similarities, differences, and implications for cancer therapy, Curr. Pharmaceut. Des., 18, 1345–1371.

    Article  CAS  Google Scholar 

  100. Hoffmann, E. K., Lambert, I., and Pedersen, S. F. (2009) Physiology of cell volume regulation in vertebrates, Physiol. Rev., 89, 193–277.

    Article  CAS  PubMed  Google Scholar 

  101. Pedersen, S. F. (2006) The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death, Pflugers’ Arch. Eur. J. Physiol., 452, 249–259.

    Article  CAS  Google Scholar 

  102. Reshkin, S. J., Bellizzi, A., Caldeira, S., Albarani, V., Malanchi, I., Poignee, M., Alunni-Fabbroni, M., Casavola, V., and Tommasino, M. (2000) Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes, FASEB J., 14, 2185–2197.

    Article  CAS  PubMed  Google Scholar 

  103. Aravena, C., Beltran, A. R., Cornejo, M., Torres, V., Diaz, E. S., Guzman-Gutierrez, E., Pardo, F., Leiva, A., Sobrevia, L., and Ramirez, M. A. (2012) Potential role of sodium-proton exchangers in the low concentration arsenic trioxide-increased intracellular pH and cell proliferation, PLoS One, 7, e51451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Reshkin, S. J., Greco, M. R., and Cardone, R. A. (2014) Role of pHi, and proton transporters in oncogene-driven neoplastic transformation, Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci., 369, 20130100.

    Article  Google Scholar 

  105. Reshkin, S. J., Cardone, R. A., and Harguindey, S. (2013) Na+-H+ exchanger, pH regulation and cancer, Rec. Pat. Anti Cancer Drug Discov., 8, 85–99.

    Article  CAS  Google Scholar 

  106. Reshkin, S. J., Cardone, R. A., Zeeberg, K., Greco, M. R., and Harguindey, S. (2014) The Na+-H+ exchanger (NHE1) in pH regulation and cancer, Top. Anti Cancer Res., 3, 384–417.

    Google Scholar 

  107. Stylli, S. S., Kaye, A. H., and Lock, P. (2008) Invadopodia: at the cutting edge of tumour invasion, J. Clin. Neurosci., 15, 725–737.

    Article  CAS  PubMed  Google Scholar 

  108. Yamaguchi, H. (2012) Pathological roles of invadopodia in cancer invasion and metastasis, Eur. J. Cell. Biol., 91, 902–907.

    Article  CAS  PubMed  Google Scholar 

  109. Greco, M. R., Antelmi, E., Busco, G., Guerra, L., Rubino, R., Casavola, V., Reshkin, S. J., and Cardone, R. A. (2014) Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe, Oncol. Rep., 31, 940–946.

    CAS  PubMed  Google Scholar 

  110. Busco, G., Cardone, R. A., Greco, M. R., Bellizzi, A., Colella, M., Antelmi, E., Mancini, M. T., Dell’Aquila, M. E., Casavola, V., Paradiso, A., and Reshkin, S. J. (2010) NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space, FASEB J., 24, 3903–3915.

    Article  CAS  PubMed  Google Scholar 

  111. Fujiwara, Y., Higuchi, K., Takashima, T., Hamaguchi, M., Hayakawa, T., Tominaga, K., Watanabe, T., Oshitani, N., Shimada, Y., and Arakawa, T. (2006) Roles of epidermal growth factor and Na+/H+ exchanger-1 in esophageal epithelial defense against acid-induced injury, Am. J. Physiol. Gastrointest. Liver Physiol., 290, G665–667.

    Article  CAS  PubMed  Google Scholar 

  112. Amith, S. R., and Fliegel, L. (2013) Regulation of the Na/H exchanger (NHE1) in breast cancer metastasis, Cancer Res., 73, 1259–1264.

    Article  CAS  PubMed  Google Scholar 

  113. Chiang, Y., Chou, C. Y., Hsu, K. F., Huang, Y. F., and Shen, M. R. (2008) EGF upregulates Na+/H+ exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness, J. Cell. Physiol., 214, 810–819.

    Article  CAS  PubMed  Google Scholar 

  114. Yang, X., Wang, D., and Dong, W. (2010) Inhibition of Na+/H+ exchanger 1 by 5-(N-ethyl-N-isopropyl) amiloride reduces hypoxia-induced hepatocellular carcinoma invasion and motility, Cancer Lett., 295, 198–204.

    Article  CAS  PubMed  Google Scholar 

  115. Guan, B., Hoque, A., and Xu, X. (2014) Amiloride and guggulsterone suppression of esophageal cancer cell growth in vitro and in nude mouse xenografts, Front. Biol. (Beijing), 9, 75–81.

    Article  CAS  Google Scholar 

  116. Matthews, H., Ranson, M., and Kelso, M. J. (2011) Antitumour/metastasis effects of the potassium-sparing diuretic amiloride: an orally active anti-cancer drug waiting for its call-of-duty? Int. J. Cancer, 129, 2051–2061.

    Article  CAS  PubMed  Google Scholar 

  117. Tatsuta, M., Iishi, H., and Baba, M. (1997) Chemoprevention by amiloride against experimental hepatocarcinogenesis induced by N-nitrosomorpholine in Sprague–Dawley rats, Cancer Lett., 119, 109–113.

    Article  CAS  PubMed  Google Scholar 

  118. Sparfel, L., Huc, L., Le Vee, M., Desille, M., LagadicGossmann, D., and Fardel, O. (2004) Inhibition of carcinogen-bioactivating cytochrome P450 1 isoforms by amiloride derivatives, Biochem. Pharmacol., 67, 1711–1719.

    Article  CAS  PubMed  Google Scholar 

  119. Lyons, J. C., Ross, B. D., and Song, C. W. (1993) Enhancement of hyperthermia effect in vivo by amiloride and DIDS, Int. J. Radiat. Oncol. Biol. Phys., 25, 103.

    Article  Google Scholar 

  120. Nagata, H., Che, X. F., Miyazawa, K., Tomoda, A., Konishi, M., Ubukata, H., and Tabuchi, T. (2011) Rapid decrease of intracellular pH associated with inhibition of Na+/H+ exchanger precedes apoptotic events in the MNK45 and MNK74 gastric cancer cell lines treated with 2-aminophenoxazine-3-one, Oncol. Rep., 25, 341–346.

    CAS  PubMed  Google Scholar 

  121. Nakachi, T., Tabuchi, T., Takasaki, A., Arai, S., Miyazawa, K., and Tomoda, A. (2010) Anticancer activity of phenoxazines produced by bovine erythrocytes on colon cancer cells, Oncol. Rep., 23, 1517–1522.

    CAS  PubMed  Google Scholar 

  122. Zheng, C. L., Che, X. F., Akiyama, S., Miyazawa, K., and Tomoda, A. (2010) 2-Aminophenoxazine-3-one induces cellular apoptosis by causing rapid intracellular acidification and generating reactive oxygen species in human lung adenocarcinoma cells, Int. J. Oncol., 36, 641–650.

    CAS  PubMed  Google Scholar 

  123. Harguindey, S., Arranz, J. L., Polo Orozco, J. D., Rauch, C., Fais, S., Cardone, R. A., and Reshkin, S. J. (2013) Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs–an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research, Transl. Med., 11, 282 doi: 10.1186/1479–5876–11–282.

    Article  CAS  Google Scholar 

  124. Alfarouk, K. O., Verduzco, D., Rauch, C., Muddathir, A. K., Bashir, A. H., Elhassan, G. O., Ibrahim, M. E., Orozco, J. D., Cardone, R. A., Reshkin, S. J., and Harguindey, S. (2014) Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question, Oncoscience, 1, 777–802.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Osinsky, S., and Vaupel, M. (2009) Microphysiology of Tumors [in Russian], Naukova Dumka, Kiev.

    Google Scholar 

  126. McCarty, M. F., and Whitaker, J. (2010) Manipulating tumor acidification as a cancer treatment strategy, Altern. Med. Rev., 15, 264–272.

    PubMed  Google Scholar 

  127. Trivedi, B., and Danforth, W. H. (1966) Effect of pH on the kinetics of frog muscle phosphofructokinase, J. Biol. Chem., 241, 4110–4112.

    CAS  PubMed  Google Scholar 

  128. Guzy, R. D., and Schumacker, P. T. (2008) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia, Exp. Physiol., 91, 807–819.

    Article  CAS  Google Scholar 

  129. Giang, A. H., Raymond, T., Brookes, P., De Mesy Bentley, K., Schwarz, E., O’ Keefe, R., and Eliseev, R. (2013) Mitochondrial dysfunction and permeability transition in osteosarcoma cells showing the Warburg effect, J. Biol. Chem., 288, 33303–33311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gasparre, G., Romeo, G., Rugolo, M., and Porcelli, A. M. (2011) Learning from oncocytic tumors: why choose inefficient mitochondria? Biochim. Biophys. Acta, 1807, 633–642.

    Article  CAS  PubMed  Google Scholar 

  131. Cordero-Espinoza, L., and Hagen, T. (2013) Increased concentrations of fructose 2,6-bisphosphate contribute to the Warburg effect in phosphatase and tensin homolog (PTEN)-deficient cells, J. Biol. Chem., 288, 36020–36028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Harguindey, S., Arranz, J. L., Wahl, M. L., Orive, G., and Reshkin, S. J. (2009) Proton transport inhibitors as potentially selective anticancer drugs, Anticancer Res., 29, 2127–2136.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kobliakov.

Additional information

Original Russian Text © V. A. Kobliakov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 4, pp. 557-571.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobliakov, V.A. Role of proton pumps in tumorigenesis. Biochemistry Moscow 82, 401–412 (2017). https://doi.org/10.1134/S0006297917040010

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917040010

Keywords

Navigation