Skip to main content
Log in

Selection of progesterone derivatives specific to membrane progesterone receptors

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The search of selective agonists and antagonists of membrane progesterone receptors (mPRs) is a starting point for the study of progesterone signal transduction mechanisms mediated by mPRs, distinct from nuclear receptors. According to preliminary data, the ligand affinity for mPRs differs significantly from that for classical nuclear progesterone receptors (nPRs), which might indicate structural differences in the ligand-binding pocket of these proteins. In the present work, we analyzed the affinity of several progesterone derivatives for mPRs of human pancreatic adenocarcinoma BxPC3 cell line that is characterized by a high level of mPR mRNA expression and by the absence of expression of nPR mRNA. The values were compared with the affinity of these compounds for nPRs. All tested compounds showed almost no affinity for nPRs, whereas their selectivity towards mPRs was different. Derivatives with an additional 19-hydroxyl group and removed 3-keto group had the highest selectivity for mPRs. These results suggest these compounds as the most selective progesterone analogs for studying the mechanisms of progestin action via mPRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smirnov, A. N. (2006) Elements of Endocrine Regulation [in Russian], GEOTAR-Media, Moscow.

    Google Scholar 

  2. Tokmakov, A. A., and Fukami, Y. (2009) Nongenomic mechanisms of progesterone, Tsitologiya, 51, 403–416.

    CAS  Google Scholar 

  3. Zhu, Y., Bond, J., and Thomas, P. (2003) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor, Proc. Natl. Acad. Sci. USA, 100, 2237–2242.

    CAS  PubMed  Google Scholar 

  4. Thomas, P., Pang, Y., Dong, J., Groenen, P., Kelder, J., De Vlieg, J., Zhu, Y., and Tubbs, C. (2007) Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor alpha subtypes and their evolutionary origins, Endocrinology, 148, 705–718.

    Article  CAS  PubMed  Google Scholar 

  5. Atif, F., Yousuf, S., and Stein, D. G. (2015) Anti-tumor effects of progesterone in human glioblastoma multiforme: role of PI3K/Akt/mTOR signaling, J. Steroid Biochem. Mol. Biol., 146, 62–73.

    Article  CAS  PubMed  Google Scholar 

  6. Atif, F., Sayeed, I., Yousuf, S., Ishrat, T., Hua, F., Wang, J., Brat, D. J., and Stein, D. G. (2011) Progesterone inhibits the growth of human neuroblastoma: in vitro and in vivo evidence, Mol. Med., 17, 1084–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karteris, E., Zervou, S., Pang, Y., Dong, J., Hillhouse, E. W., Randeva, H. S., and Thomas, P. (2006) Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term, Mol. Endocrinol., 20, 1519–1534.

    Article  CAS  PubMed  Google Scholar 

  8. Kelder, J., Azevedo, R., Pang, Y., De Vlieg, J., Dong, J., and Thomas, P. (2010) Comparison between steroid binding to membrane progesterone receptor alpha (mPRalpha) and to nuclear progesterone receptor: correlation with physicochemical properties assessed by comparative molecular field analysis and identification of mPRalphaspecific agonists, Steroids, 75, 314–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lisanova, O. V., Shchelkunova, T. A., Morozov, I. A., Rubtsov, P. M., Levina, I. S., Kulikova, L. E., and Smirnov, A. N. (2013) Approaches to the design of selective ligands for membrane progesterone receptor alpha, Biochemistry (Moscow), 78, 236–243.

    Article  CAS  Google Scholar 

  10. Goncharov, A. I., Maslakova, A. A., Polikarpova, A. V., Bulanova, E. A., Guseva, A. A., Morozov, I. A., Rubtsov, P. M., Smirnova, O. V., and Shchelkunova, T. A. (2017) Progesterone inhibits proliferation and modulates expression of proliferation-related genes in classical progesterone receptor-negative human BxPC3 pancreatic adenocarcinoma cells, J. Steroid Biochem. Mol. Biol., 165, 293–304.

    Article  CAS  PubMed  Google Scholar 

  11. Smirnov, A. N., Pokrovskaya, E. V., Shevchenko, V. P., Nagaev, I. Yu., Myasoedov, N. F., Levina, I. S., Kulikova, L. E., and Kamernitsky, A. V. (2002) Species and tissue distribution of proteins binding 16a,17a-cycloalkanoprogesterone derivatives, Bioorg. Khim., 28, 251–257.

    CAS  PubMed  Google Scholar 

  12. Fedyushkina, I. V., Skvortsov, V. S., Romero Reyes, I. V., and Levina, I. S. (2013) Molecular docking and 3D-QSAR of 16a,17a-cycloalkanoprogesterone derivatives as ligands of the progesterone receptor, Biomed. Chem., 8, 168–176.

    Google Scholar 

  13. Zolottsev, V. A., Zavarzin, I. V., Shirinyan, V. Z., and Levina, I. S. (2013) Synthesis of Eand Z-isomeric progesterone 3O-methyloximes, Russ. Chem. Bull., 62, 2086–2087.

    Article  CAS  Google Scholar 

  14. Semeikin, A. V., Fedotcheva, T. A., Levina, I. S., Kulikova, L. E., Zavarzin, I. V., Tikhonov, D. A., Kareeva, E. N., and Shimanovskii, N. L. (2014) Synthesis and cytostatic activity of some pregna-D'-pentarans studied on HeLa cells, Khim.-Farm. Zh., 48, 9–13.

    Google Scholar 

  15. Kirk, D. N., Rajagopalan, M. S., and Varley, M. J. (1983) An improved route to 19-hydroxypregn-4-ene-3,20-dione and synthesis of its [19-2H2] analogue, J. Chem. Soc. Perkin Trans., 1, 2225–2227.

    Article  Google Scholar 

  16. Bagli, J. F., Morand, P. F., and Gaudry, R. (1963) Synthetic studies on C-19 oxygenated pregnanes, J. Org. Chem., 28, 1207–1217.

    Article  CAS  Google Scholar 

  17. Ashley, R. L., Arreguin-Arevalo, J. A., and Nett, T. M. (2009) Binding characteristics of the ovine membrane progesterone receptor alpha and expression of the receptor during the estrous cycle, Reprod. Biol. Endocrinol., 7, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cai, Z., and Stocco, C. O. (2005) Expression and regulation of progestin membrane receptors in the rat corpus luteum, Endocrinology, 146, 5522–5532.

    Article  CAS  PubMed  Google Scholar 

  19. Whilliams, S. P., and Sigler, P. B. (1998) Atomic structure of progesterone complexed with its receptor, Nature, 393, 392–396.

    Article  Google Scholar 

  20. Levina, I. S., Pokrovskaya, E. V., Kulikova, L. E., Kamernitzky, A. V., Kachala, V. V., and Smirnov, A. N. (2008) 3and 19-oximes of 16a,17a-cyclohexanoprogesterone derivatives: synthesis and interactions with progesterone receptor and other proteins, Steroids, 73, 815–827.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Polikarpova.

Additional information

Original Russian Text © A. V. Polikarpova, A. A. Maslakova, I. S. Levina, L. E. Kulikova, Y. V. Kuznetsov, A. A. Guseva, T. A. Shchelkunova, I. V. Zavarzin, O. V. Smirnova, 2017, published in Biokhimiya, 2017, Vol. 82, No. 2, pp. 247-257.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-231, December 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polikarpova, A.V., Maslakova, A.A., Levina, I.S. et al. Selection of progesterone derivatives specific to membrane progesterone receptors. Biochemistry Moscow 82, 140–148 (2017). https://doi.org/10.1134/S0006297917020055

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917020055

Keywords

Navigation