Skip to main content
Log in

Cells resistant to toxic concentrations of manganese have increased ability to repair DNA

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Manganese (Mn) is crucially important for vital activity of cells and has many biological functions. Nevertheless, high doses of Mn taken up by an organism over a long period may cause neurodegenerative diseases such as manganism and Parkinsonism. The molecular mechanisms of this Mn toxicity are still poorly studied. It is now believed that Mn-induced pathophysiological neural processes are multifaceted and affect several metabolic pathways. In particular, Mn ions might affect the processes of DNA replication and repair. To test this possibility, we obtained an SKOV-3 cell line resistant to the toxic action of Mn ions. We found that these cells are characterized by the activation of poly(ADP-ribose)polymerase, which leads to increased ability to repair DNA. Thus, the model used here supports the suggestion that at least one cause of Mn cytotoxicity might be disorders of the processes involved in DNA replication and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTT:

dithiothreitol

misGvA:

misincorporation of G versus A

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PAR:

poly(ADP-ribose)

PARP-1:

poly(ADP-ribose)polymerase-1

Pol ι:

DNA polymerase iota.

References

  1. Santamaria, A. B., and Sulsky, S. I. (2010) Risk assessment of an essential element: manganese, J. Toxicol. Environ. Health, 73, 128–155.

    Article  CAS  Google Scholar 

  2. Roth, J. A. (2014) Correlation between the biochemical pathways altered by mutated Parkinson-related genes and chronic exposure to manganese, Neurotoxicology, 44, 314–325.

    Article  CAS  PubMed  Google Scholar 

  3. Integrated Risk Information System (IRIS) (1996) United States Environmental Protection Agency (USEPA).

  4. Toxicological Profile for Manganese (2000) United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR).

  5. Zhang, F., Xu Z., Gao, J., Xu, B., and Deng, Y. (2008) In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain, Environ. Toxicol. Pharmacol., 26, 232–236.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, S., Fu, J., and Zhou, Z. (2004) In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain, Toxicol. in vitro, 18, 71–77.

    Article  PubMed  Google Scholar 

  7. El-Deiry, W. S., Downey, K. M., and So, A. G. (1984) Molecular mechanisms of manganese mutagenesis, Proc. Natl. Acad. Sci. USA, 81, 7378–7382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frank, E. G., and Woodgate, R. (2007) Increased catalytic activity and altered fidelity of human DNA polymerase iota in the presence of manganese, J. Biol. Chem., 282, 2468924696.

    Google Scholar 

  9. Bornhorst, J., Ebert, F., Hartwig, A., Michalke, B., and Schwerdtle, T. (2010) Manganese inhibits poly(ADP-ribosyl)ation in human cells: a possible mechanism behind manganese-induced toxicity, J. Environ. Monitor., 12, 2062–2069.

    Article  CAS  Google Scholar 

  10. Lakhin, A. V., Efremova, A. S., Makarova, I. V., Grishina, E. E., Shram, S. I., Tarantul, V. Z., and Gening, L. V. (2013) Effect of Mn(II) on erroneous activity of DNA polymerase iota in the extracts of normal and tumor human cells, Mol. Genet. Mikrobiol. Virusol., 1, 14–20.

    Google Scholar 

  11. Makarova, A. V., Grabow, C., Gening, L. V., Tarantul, V. Z., Tahirov, T. H., Bessho, T., and Pavlov, Y. I. (2011) Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota, PLoS One, 6, e16612.

  12. Torgasheva, N. A., Menzorova, N. I., Sibirtsev, Y. T., Rasskazov, V. A., Zharkov, D. O., and Nevinsky, G. A. (2016) Base excision DNA repair in the embryonic development of the sea urchin Strongylocentrotus intermedius, Mol. Biosyst., 12, 2247–2256.

    Article  CAS  PubMed  Google Scholar 

  13. Quintanar, L. (2008) Manganese neurotoxicity: a bioinorganic chemist’s perspective, Inorg. Chim. Acta, 361, 875884.

    Article  Google Scholar 

  14. Beckman, R. A., Mildvan, A. S., and Loeb, L. A. (1985) On the fidelity of DNA replication: manganese mutagenesis in vitro, Biochemistry, 8, 5810–5817.

    Article  Google Scholar 

  15. Bhanot, O. S., and Solomon, J. J. (1994) The role of mutagenic metal ions in mediating in vitro mispairing by alkylpyrimidines, Environ. Health Perspect., 102, 81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lakhin, A. V., Tarantul, V. Z., and Gening, L. V. (2014) Manganese-induced incorrect DNA synthesis as a possible cause of manganism, Mol. Genet. Mikrobiol. Virusol., 1, 1521.

    Google Scholar 

  17. Martire, S., Mosca, L., and D’Erme, M. (2015) PARP-1 involvement in neurodegeneration: a focus on Alzheimer’s and Parkinson’s diseases, Mech. Ageing Dev., 146, 53–64.

    Article  PubMed  Google Scholar 

  18. Love, S., Barber, R., and Wilcock, G. K. (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer’s disease, Brain J. Neurol., 122, 247–253.

    Article  Google Scholar 

  19. Dawson, V. L., and Dawson, T. M. (1996) Nitric oxide neurotoxicity, J. Chem. Neuroanat., 10, 179–190.

    Article  CAS  PubMed  Google Scholar 

  20. Cosi, C., Chopin, P., and Marien, M. (1996) Benzamide, an inhibitor of poly(ADP-ribose)polymerase, attenuates methamphetamine-induced dopamine neurotoxicity in the C57B1/6N mouse, Brain Res., 735, 343–348.

    CAS  Google Scholar 

  21. Wang, H., Shimoji, M., Yu, S. W., Dawson, T. M., and Dawson, V. L. (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson’s disease, Ann. N. Y. Acad. Sci., 991, 132–139.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, X. L., Wang, P., Liu, Y. H., and Xue, Y. X. (2014) Effects of poly(ADP-ribose)polymerase inhibitor 3aminobenzamide on blood-brain barrier and dopaminergic neurons of rats with lipopolysaccharide-induced Parkinson’s disease, J. Mol. Neurosci., 53, 1–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Z. Tarantul.

Additional information

Original Russian Text © K. A. Zakharcheva, L. V. Gening, K. Yu. Kazachenko, V. Z. Tarantul, 2017, published in Biokhimiya, 2017, Vol. 82, No. 1, pp. 101-110. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-222, November 14, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharcheva, K.A., Gening, L.V., Kazachenko, K.Y. et al. Cells resistant to toxic concentrations of manganese have increased ability to repair DNA. Biochemistry Moscow 82, 38–45 (2017). https://doi.org/10.1134/S0006297917010047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917010047

Keywords

Navigation