Skip to main content
Log in

Investigation of ribosomes using molecular dynamics simulation methods

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The ribosome as a complex molecular machine undergoes significant conformational changes while synthesizing a protein molecule. Molecular dynamics simulations have been used as complementary approaches to X-ray crystallography and cryoelectron microscopy, as well as biochemical methods, to answer many questions that modern structural methods leave unsolved. In this review, we demonstrate that all-atom modeling of ribosome molecular dynamics is particularly useful in describing the process of tRNA translocation, atomic details of behavior of nascent peptides, antibiotics, and other small molecules in the ribosomal tunnel, and the putative mechanism of allosteric signal transmission to functional sites of the ribosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MD:

molecular dynamics

NPET:

nascent peptide exit tunnel

PTC:

peptidyl transferase center of the ribosome

REMD:

replica exchange molecular dynamics

References

  1. Melnikov, S., Ben-Shem, A., Garreau de Loubresse, N., Jenner, L., Yusupova, G., and Yusupov, M. (2012) One core, two shells: bacterial and eukaryotic ribosomes, Nat. Struct. Mol. Biol., 19, 560–567.

    Article  CAS  PubMed  Google Scholar 

  2. Amunts, A., Brown, A., Toots, J., Scheres, S. H. W., and Ramakrishnan, V. (2015) The structure of human mitochondrial ribosome, Science, 348, 95–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frank, J. (2016) Whither ribosome structure and dynamics research? (A perspective), J. Mol. Biol., 428, 3565–3569.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L., Pulk, A., Wasserman, M. R., Feldman, M. B., Altman, R. B., Doudna, C. J. H., and Blanchard, S. C. (2012) Allosteric control of the ribosome by small-molecule antibiotics, Nat. Struct. Mol. Biol., 19, 957–963.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fei, J., Bronson, J. E., Hofman, J. M., Srinivas, R. L., Wiggins, C. H., and Gonzalez, R. L., Jr. (2009) Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation, Proc. Natl. Acad. Sci. USA, 106, 15702–15707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sonbonmatsu, K. Y. (2012) Computational studies of molecular machines: ribosomes, Curr. Opin. Struct. Biol., 22, 168–174.

    Article  Google Scholar 

  7. Perilla, J. R., Goh, B. C., Cassidy, C. K., Liu, B., Bernardi, R. C., Rudack, T., Yu, H., Wu, Z., and Schulten, K. (2015) Molecular dynamics simulations of large macromolecular complexes, Curr. Opin. Struct. Biol., 31, 64–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hospital, A., Coni, J. R., Orzco, M., and Gelp, J. L. (2015) Molecular dynamics simulations: advances and applications, Adv. Appl. Bioinform. Chem., 8, 37–47.

    PubMed  PubMed Central  Google Scholar 

  9. Carter, A. P., Clemons, W. M. J., Brodersen, D. E., Morgan-Warren, R., Wimberly, B. T., and Ramakrishnan, V. (2000) Functional insights from the structure of the 30S ribosomal subunit and its interaction with antibiotics, Nature, 407, 340–348.

    Article  CAS  PubMed  Google Scholar 

  10. Zeng, X., Chugh, J., Casiano-Negroni, A., Al-Hashimi, H. M., and Brooks, C. L., 3rd. (2014) Flipping of the ribosomal A-site adenines provides a basis for tRNA selection, J. Mol. Biol., 426, 3201–3213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knight, J. L., and Brooks, C. L. (2009) λ-Dynamics free energy simulation methods, J. Comput. Chem., 30, 1692–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Satpati, P., Bauer, P., and Aqvist, J. (2014) Energetic tuning by tRNA modifications ensures correct decoding of isoleucine and methionine on the ribosome, Chemistry, 20, 10271–10275.

    Article  CAS  PubMed  Google Scholar 

  13. Satpati, P., and Aqvist, J. (2014) Why base tautomerization does not cause errors in mRNA decoding on the ribosome, Nucleic Acids Res., 42, 12876–12884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chirkova, A., Erlacher, M., Clementi, N., Zywicki, M., Aigner, M., and Polacek, N. (2010) The role of the universally conserved A2450-C2063 base pair in the ribosomal peptidyl transferase center, Nucleic Acids Res., 38, 4844–4855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Englander, M. T., Avins, J. L., Fleisher, R. C., Liu, B., Effraim, P. R., Wang, J., Schulten, K., Leyh, T. S., Gonzalez, R. L., and Cornish, V. W. (2015) The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center, Proc. Natl. Acad. Sci. USA, 112, 6038–6043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brandman, R., Brandman, Y., and Pande, V. S. (2012) Asite residues move independently from P-site residues in all-atom molecular dynamics simulations of the 70S bacterial ribosome, PLoS One, 7, e29377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whitford, P. C., Ahmed, A., Yu, Y., Hennely, S. P., Tama, F., Spahn, C. M., Onuchic, J. N., and Sanbonmatsu, K. Y. (2011) Excited states of ribosome translocation revealed through integrative molecular modeling, Proc. Natl. Acad. Sci. USA, 108, 18943–8948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whitford, P. C., and Sanbonmatsu, K. Y. (2013) Simulating movement of tRNA through the ribosome during hybridstate formation, J. Chem. Phys., 139, 121919.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Noel, J. K., Whitford, P. C., Sanbonmatsu, K. Y., and Onuchic, J. N. (2010) SMOG@ctbp: simplified deployment of structure-based models in GROMACS, Nucleic Acids Res., 38, W657–W661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Whitford, P. C., Blanchard, S. C., Cate, J. H. D., and Sanbonmatsu, K. Y. (2013) Connecting the kinetics and energy landscape of tRNA translocation on the ribosome, PLoS Comput. Biol., 9, e1003003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bock, L. V., Blau, C., Schroder, G. F., Davydov, I. I., Fischer, N., Stark, H., Rodnina, V., Vaiana, A. C., and Grubmuller, H. (2013) Energy barriers and driving forces in tRNA translocation through the ribosome, Nat. Struct. Mol. Biol., 20, 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  22. Ishida, H., and Matsumoto, A. (2014) Free-energy landscape of reverse tRNA: translocation through the ribosome analyzed by electron microscopy density maps and molecular dynamics simulations, PLoS One, 9, e101951.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bock, L. V., Blau, C., Vaiana, A. C., and Grubmuller, H. (2015) Dynamic contact network between ribosomal subunits enables rapid large-scale rotation during spontaneous translocation, Nucleic Acids Res., 43, 6747–6760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lucent, D., Snow, C., Aitken, C., and Pande, V. (2010) Non-bulk-like solvent behavior in the ribosome exit tunnel, PLoS Comput. Biol., 6, e1000963.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petrone, P., Snow, C., Lucent, D., and Pande, V. (2008) Side-chain recognition and gating in the ribosome exit tunnel, Proc. Natl. Acad. Sci. USA, 105, 16549–16554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishida, H., and Hayward, S. (2008) Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosome, Biophys. J., 95, 5962–5973.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nilsson, O. B., Hedman, R., Marino, J., Wickles, S., Bischoff, L., Johansson, M., Muller-Lucks, A., Trovato, F., Puglisi, J. D., O’Brien, E. P., Beckmann, R., and Von Heijne, G. (2015) Cotranslational protein folding inside the ribosome exit tunnel, Cell Rep., 12, 1533–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Makarov, G. I., Golovin, A. V., Sumbatyan, N. V., and Bogdanov, A. A. (2015) Molecular dynamics investigation of a mechanism of allosteric signal transmission in ribosomes, Biochemistry (Moscow), 80, 1047–1056.

    Article  CAS  Google Scholar 

  29. Vazquez-Laslop, N., Ramu, H., Klepacki, D., Kannan, K., and Mankin, A. S. (2010) The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide, EMBO J., 29, 3108–3117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alexandrov, A., and Simonson, T. (2008) Molecular dynamics simulations of the 30S ribosomal subunit reveal a preferred tetracycline binding site, J. Amer. Chem. Soc., 130, 1114–1115.

    Article  Google Scholar 

  31. Vaiana, A., and Sanbonmatsu, K. (2009) Stochastic gating and drug–ribosome interactions, J. Mol. Biol., 386, 648–661.

    Article  CAS  PubMed  Google Scholar 

  32. Romanowska, J., McCammon, J., and Trylska, J. (2011) Understanding the origins of bacterial resistance to aminoglycosides through molecular dynamics mutational study of the ribosomal A-site, PLoS Comput. Biol., 7, e1002099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Panecka, J., Mura, C., and Trylska, J. (2014) Interplay of the bacterial ribosomal A-site, s12 protein mutations and paromomycin binding: a molecular dynamics study, PLoS One, 9, e111811.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wolf, A., Baumann, S., Arndt, H. D., and Kirschner, K. N. (2012) Influence of thiostrepton binding on the ribosomal GTPase associated region characterized by molecular dynamics simulation, Bioorg. Med. Chem., 20, 7194–7205.

    Article  CAS  PubMed  Google Scholar 

  35. Ge, X., and Roux, B. (2010) Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials, J. Mol. Recogn., 23, 128–141.

    Article  CAS  Google Scholar 

  36. Yam, W. K., and Wahab, H. A. (2009) Molecular insights into 14-membered macrolides using the MM-PBSA method, J. Chem. Inf. Model., 49, 1558–1567.

    Article  CAS  PubMed  Google Scholar 

  37. Saini, J., Homeyer, N., Fulle, S., and Gohlke, H. (2013) Determinants of the species selectivity of oxazolidinone antibiotics targeting the large ribosomal subunit, Biol. Chem., 394, 1529–1541.

    Article  CAS  PubMed  Google Scholar 

  38. Sothiselvam, S., Liu, B., Han, W., Ramu, H., Klepacki, D., Atkinson, G. C., Brauer, A., Remm, M., Tenson, T., Schulten, K., Vazquez-Laslop, N., and Mankin, A. S. (2014) Macrolide antibiotics allosterically predispose the ribosome for translation arrest, Proc. Natl. Acad. Sci. USA, 111, 9804–9809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gupta, P., Liu, B., Klepacki, D., Gupta, V., Schulten, K., Mankin, A. S., and Vazquez-Laslop, N. (2016) Nascent peptide assists the ribosome in recognizing chemically distinct small molecules, Nat. Chem. Biol., 12, 153–158.

    Article  CAS  PubMed  Google Scholar 

  40. Arenz, S., Bock, L. V., Graf, M., Innis, C. A., Beckmann, R., Grubmüller, H., Vaiana, A. C., and Wilson, D. N. (2016) A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest, Nat. Commun., 7, 12026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Small, M. C., Lopes, P., Andrade, R. B., and MacKerell, A. D., Jr. (2013) Impact of ribosomal modification on the binding of the antibiotic telithromycin using a combined grand canonical Monte Carlo/molecular dynamics simulation approach, PLoS Comput. Biol., 9, e1003113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Y., Shen, J. K., and Schroeder, S. J. (2012) Nucleotide dynamics at the A-site cleft in the peptidyltransferase center of H. marismortui 50S ribosomal subunits, J. Phys. Chem. Lett., 8, 1007–1010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bogdanov.

Additional information

Original Russian Text © G. I. Makarov, T. M. Makarova, N. V. Sumbatyan, A. A. Bogdanov, 2016, published in Uspekhi Biologicheskoi Khimii, 2016, Vol. 56, pp. 3–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, G.I., Makarova, T.M., Sumbatyan, N.V. et al. Investigation of ribosomes using molecular dynamics simulation methods. Biochemistry Moscow 81, 1579–1588 (2016). https://doi.org/10.1134/S0006297916130010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916130010

Keywords

Navigation