Abstract
Rodents are the most commonly used model organisms in studies of aging in vertebrates. However, there are species that may suit this role much better. Most birds (Aves), having higher rate of metabolism, live two-to-three times longer than mammals of the same size. This mini-review briefly covers several evolutionary, ecological, and physiological aspects that may contribute to the phenomenon of birds’ longevity. The role of different molecular mechanisms known to take part in the process of aging according to various existing theories, e.g. telomere shortening, protection against reactive oxygen species, and formation of advanced glycation end-products is discussed. We also address some features of birds’ aging that make this group unique and perspective model organisms in longevity studies.
This is a preview of subscription content, access via your institution.
Abbreviations
- AGE:
-
products, advanced glycation end-products
- ROS:
-
reactive oxygen species
References
Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., Ho, S. Y., Faircloth, B. C., Nabholz, B., Howard, J. T., Suh, A., Weber, C. C., da Fonseca, R. R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., Ganapathy, G., Boussau, B., Bayzid, M. S., Zavidovych, V., Subramanian, S., Gabaldon, T., Capella-Gutierrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M., Lindow, B., Warren, W. C., Ray, D., Green, R. E., Bruford, M. W., Zhan, X., Dixon, A., Li, S., Li, N., Huang, Y., Derryberry, E. P., Bertelsen, M. F., Sheldon, F. H., Brumfield, R. T., Mello, C. V., Lovell, P. V., Wirthlin, M., Schneider, M. P., Prosdocimi, F., Samaniego, J. A., Vargas Velazquez, A. M., Alfaro-Nunez, A., Campos, P. F., Petersen, B., Sicheritz-Ponten, T., Pas, A., Bailey, T., Scofield, P., Bunce, M., Lambert, D. M., Zhou, Q., Perelman, P., Driskell, A. C., Shapiro, B., Xiong, Z., Zeng, Y., Liu, S., Li, Z., Liu, B., Wu, K., Xiao, J., Yinqi, X., Zheng, Q., Zhang, Y., Yang, H., Wang, J., Smeds, L., Rheindt, F. E., Braun, M., Fjeldsa, J., Orlando, L., Barker, F. K., Jonsson, K. A., Johnson, W., Koepfli, K. P., O’Brien, S., Haussler, D., Ryder, O. A., Rahbek, C., Willerslev, E., Graves, G. R., Glenn, T. C., McCormack, J., Burt, D., Ellegren, H., Alstrom, P., Edwards, S. V., Stamatakis, A., Mindell, D. P., Cracraft, J., Braun, E. L., Warnow, T., Jun, W., Gilbert, M. T., and Zhang, G. (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds, Science, 346, 1320–1331.
Ericson, P. G. P., Anderson, C. L., Britton, T., Elzanowski, A., Johansson, U. S., Kallersjo, M., Ohlson, J. I., Parsons, T. J., Zuccon, D., and Mayr, G. (2006) Diversification of Neoaves: integration of molecular sequence data and fossils, Biol. Lett., 2, 543–547.
Benz, B. W., Robbins, M. B., and Peterson, A. T. (2006) Evolutionary history of woodpeckers and allies (Aves: Picidae): placing key taxa on the phylogenetic tree, Mol. Phylogenet. Evol., 40, 389–399.
Helbig, A. J., Kocum, A., Seibold, I., and Braun, M. J. (2005) A multi-gene phylogeny of aquiline eagles (Aves: Accipitriformes) reveals extensive paraphyly at the genus level, Mol. Phylogenet. Evol., 35, 147–164.
Bacon, F. (1638) The Historie of Life and Death, Da Capo Press, Amsterdam.
Austad, S. N. (1997) Birds as models of aging in biomedical research, ILAR J., 38, 137–141.
Tacutu, R., Craig, T., Budovsky, A., Wuttke, D., Lehmann, G., Taranukha, D., Costa, J., Fraifeld, V. E., and De Magalhaes, J. P. (2013) Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing, Nucleic Acids Res., 41, D1027–D1033.
Brouwer, K., Jones, M. L., King, C. E., and Schifter, H. (2000) Longevity records for Psittaciformes in captivity, Int. Zoo Yearbook, 37, 299–316.
Young, A. M., Hobson, E. A., Lackey, L. B., and Wright, T. F. (2012) Survival on the ark: life history trends in captive parrots, Anim. Conserv., 15, 28–53.
Lindstedt, S. L., and Calder, W. A. (1976) Body size and longevity in birds, Condor, 78, 91–94.
Austad, S. N. (2011) Candidate bird species for use in aging research, ILAR J., 52, 89–96.
Holmes, D. J., and Austad, S. N. (1995) Birds as animal models for the comparative biology of aging: a prospectus, J. Gerontol. A Biol. Sci. Med. Sci., 50, B59–66.
Prinzinger, R. (1993) Life-span in birds and the aging theory of absolute metabolic scope, Comp. Biochem. Phys. A, 105, 609–615.
Hulbert, A. J., Pamplona, R., Buffenstein, R., and Buttemer, W. A. (2007) Life and death: metabolic rate, membrane composition, and lifespan of animals, Physiol. Rev., 87, 1175–1213.
Gosden, R. (1996) Cheating Time: Science, Sex, and Aging, W. H. Freeman & Company, New York.
Austad, S. N., and Fischer, K. E. (1991) Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials, J. Gerontol., 46, B47–53.
Munshi-South, J., and Wilkinson, G. S. (2010) Bats and birds: exceptional longevity despite high metabolic rates, Ageing Res. Rev., 9, 12–19.
Medawar, P. B. (1952) An Unsolved Problem of Biology, H. K. Lewis, London.
Healy, K., Guillerme, T., Finlay, S., Kane, A., Kelly, S. B. A., McClean, D., Kelly, D. J., Donohue, I., Jackson, A. L., and Cooper, N. (2014) Ecology and mode-of-life explain lifespan variation in birds and mammals, Proc. R Soc. B, 281.
Austad, S. N. (1993) Retarded senescence in an insular population of virginia opossums (Didelphis-Virginiana), J. Zool., 229, 695–708.
Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015) Aging as an evolvability-increasing program which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.
Edrey, Y. H., Hanes, M., Pinto, M., Mele, J., and Buffenstein, R. (2011) Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research, ILAR J., 52, 41–53.
Buffenstein, R., and Yahav, S. (1991) Is the naked mole-rat heterocephalus-glaber an endothermic yet poikilothermic mammal, J. Thermal. Biol., 16, 227–232.
Park, T. J., Lu, Y., Juttner, R., Smith, E. S., Hu, J., Brand, A., Wetzel, C., Milenkovic, N., Erdmann, B., Heppenstall, P. A., Laurito, C. E., Wilson, S. P., and Lewin, G. R. (2008) Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber), PLoS Biol., 6, e13.
Larson, J., and Park, T. J. (2009) Extreme hypoxia tolerance of naked mole-rat brain, Neuroreport, 20, 1634–1637.
Jarvis, J. U. M. (1981) Eusociality in a mammal–cooperative breeding in naked mole-rat colonies, Science, 212, 571–573.
Clubb, S. L., and Karpinski, L. (1993) Aging in Macaws, J. Ass. Avian Veter., 7, 31–33.
Ottinger, M. A., Reed, E., Wu, J., Thompson, N., and French, J. B., Jr. (2003) Establishing appropriate measures for monitoring aging in birds: comparing short and long lived species, Exp. Gerontol., 38, 747–750.
Skulachev, V. P. (2005) How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers, IUBMB Life, 57, 305–310.
Rubner, M. (1908) Das Problem der Lebensdauer und seine Beziehung zu Wachstum und Ernahrung, Oldenbourg, Munchen-Berlin.
Barja, G., Cadenas, S., Rojas, C., Perezcampo, R., and Lopeztorres, M. (1994) Low mitochondrial free-radical production per unit O-2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic-rate in birds, Free Radic. Res., 21, 317–327.
Ku, H. H., and Sohal, R. S. (1993) Comparison of mitochondrial prooxidant generation and antioxidant defenses between rat and pigeon–possible basis of variation in longevity and metabolic potential, Mech. Ageing Dev., 72, 67–76.
Hickey, A. J. R., Jullig, M., Aitken, J., Loomes, K., Hauber, M. E., and Phillips, A. R. J. (2012) Birds and longevity: does flight driven aerobicity provide an oxidative sink? Ageing Res. Rev., 11, 242–253.
Montgomery, M. K., Hulbert, A. J., and Buttemer, W. A. (2011) The long life of birds: the rat–pigeon comparison revisited, PLoS One, 6.
Holmes, D., and Martin, K. (2009) A bird’s-eye view of aging: what’s in it for ornithologists? Auk, 126, 1–23.
Pamplona, R., Portero-Otin, M., Riba, D., Ledo, F., Gredilla, R., Herrero, A., and Barja, G. (1999) Heart fatty acid unsaturation and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse, Aging Clin. Exp. Res., 11, 44–49.
Wu, X. W., Muzny, D. M., Lee, C. C., and Caskey, C. T. (1992) Independent mutational events in the loss of urate oxidase during hominoid evolution, J. Mol. Evol., 34, 78–84.
Feniouk, B. A., and Skulachev, V. P. (2016) Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants, Curr. Aging Sci., in press.
Delany, M. E., Krupkin, A. B., and Miller, M. M. (2000) Organization of telomere sequences in birds: evidence for arrays of extreme length and for in vivo shortening, Cytogenet. Cell Genet., 90, 139–145.
Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C. T., and Vleck, C. M. (2004) Telomerase expression is differentially regulated in birds of differing lifespan, Ann. N. Y. Acad. Sci., 1019, 186–190.
Sudyka, J., Arct, A., Drobniak, S., Gustafsson, L., and Cichoan, M. (2016) Longitudinal studies confirm faster telomere erosion in short-lived bird species, J. Ornithol., 157, 373–375.
Vogel, G. (2015) Malaria may accelerate aging in birds, Science, 347, 362–362.
Braun, E. J., and Sweazea, K. L. (2008) Glucose regulation in birds, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 151, 1–9.
O’Donnell, J. A., 3rd, Garbett, R., and Morzenti, A. (1978) Normal fasting plasma glucose levels in some birds of prey, J. Wildl. Dis., 14, 479–481.
Else, P. L., Brand, M. D., Turner, N., and Hulbert, A. J. (2004) Respiration rate of hepatocytes varies with body mass in birds, J. Exp. Biol., 207, 2305–2311.
Carrillo-Infante, C., Abbadessa, G., Bagella, L., and Giordano, A. (2007) Viral infections as a cause of cancer, Int. J. Oncol., 30, 1521–1528.
Ricklefs, R. E. (2006) Embryo development and ageing in birds and mammals, Proc. R Soc. B, 273, 2077–2082.
Skulachev, V. P., Holztze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Morhart, M., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2016) Neoteny and physiological phenomena of delay of aging program: from naked mole rats to “naked apes” (humans), Physiol. Rev., submitted.
Masoro, E. J. (2003) Subfield history: caloric restriction, slowing aging, and extending life, Sci. Aging Knowl. Environ., RE2.
Ottinger, M. A., Mobarak, M., Abdelnabi, M., Roth, G., Proudman, J., and Ingram, D. K. (2005) Effects of calorie restriction on reproductive and adrenal systems in Japanese quail: are responses similar to mammals, particularly primates? Mech. Ageing Dev., 126, 967–975.
Holmes, D. J., Fluckiger, R., and Austad, S. N. (2001) Comparative biology of aging in birds: an update, Exp. Gerontol., 36, 869–883.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Travin, D.Y., Feniouk, B.A. Aging in birds. Biochemistry Moscow 81, 1558–1563 (2016). https://doi.org/10.1134/S0006297916120178
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0006297916120178
Key words
- aging
- senescence
- ROS
- reactive oxygen species
- birds
- avian
- AGE-products
- longevity
- telomeres