Skip to main content
Log in

Aging in birds

  • Regular Papers
  • Mini-Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Rodents are the most commonly used model organisms in studies of aging in vertebrates. However, there are species that may suit this role much better. Most birds (Aves), having higher rate of metabolism, live two-to-three times longer than mammals of the same size. This mini-review briefly covers several evolutionary, ecological, and physiological aspects that may contribute to the phenomenon of birds’ longevity. The role of different molecular mechanisms known to take part in the process of aging according to various existing theories, e.g. telomere shortening, protection against reactive oxygen species, and formation of advanced glycation end-products is discussed. We also address some features of birds’ aging that make this group unique and perspective model organisms in longevity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGE:

products, advanced glycation end-products

ROS:

reactive oxygen species

References

  1. Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., Ho, S. Y., Faircloth, B. C., Nabholz, B., Howard, J. T., Suh, A., Weber, C. C., da Fonseca, R. R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., Ganapathy, G., Boussau, B., Bayzid, M. S., Zavidovych, V., Subramanian, S., Gabaldon, T., Capella-Gutierrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M., Lindow, B., Warren, W. C., Ray, D., Green, R. E., Bruford, M. W., Zhan, X., Dixon, A., Li, S., Li, N., Huang, Y., Derryberry, E. P., Bertelsen, M. F., Sheldon, F. H., Brumfield, R. T., Mello, C. V., Lovell, P. V., Wirthlin, M., Schneider, M. P., Prosdocimi, F., Samaniego, J. A., Vargas Velazquez, A. M., Alfaro-Nunez, A., Campos, P. F., Petersen, B., Sicheritz-Ponten, T., Pas, A., Bailey, T., Scofield, P., Bunce, M., Lambert, D. M., Zhou, Q., Perelman, P., Driskell, A. C., Shapiro, B., Xiong, Z., Zeng, Y., Liu, S., Li, Z., Liu, B., Wu, K., Xiao, J., Yinqi, X., Zheng, Q., Zhang, Y., Yang, H., Wang, J., Smeds, L., Rheindt, F. E., Braun, M., Fjeldsa, J., Orlando, L., Barker, F. K., Jonsson, K. A., Johnson, W., Koepfli, K. P., O’Brien, S., Haussler, D., Ryder, O. A., Rahbek, C., Willerslev, E., Graves, G. R., Glenn, T. C., McCormack, J., Burt, D., Ellegren, H., Alstrom, P., Edwards, S. V., Stamatakis, A., Mindell, D. P., Cracraft, J., Braun, E. L., Warnow, T., Jun, W., Gilbert, M. T., and Zhang, G. (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds, Science, 346, 1320–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ericson, P. G. P., Anderson, C. L., Britton, T., Elzanowski, A., Johansson, U. S., Kallersjo, M., Ohlson, J. I., Parsons, T. J., Zuccon, D., and Mayr, G. (2006) Diversification of Neoaves: integration of molecular sequence data and fossils, Biol. Lett., 2, 543–547.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Benz, B. W., Robbins, M. B., and Peterson, A. T. (2006) Evolutionary history of woodpeckers and allies (Aves: Picidae): placing key taxa on the phylogenetic tree, Mol. Phylogenet. Evol., 40, 389–399.

    Article  CAS  PubMed  Google Scholar 

  4. Helbig, A. J., Kocum, A., Seibold, I., and Braun, M. J. (2005) A multi-gene phylogeny of aquiline eagles (Aves: Accipitriformes) reveals extensive paraphyly at the genus level, Mol. Phylogenet. Evol., 35, 147–164.

    Article  CAS  PubMed  Google Scholar 

  5. Bacon, F. (1638) The Historie of Life and Death, Da Capo Press, Amsterdam.

    Google Scholar 

  6. Austad, S. N. (1997) Birds as models of aging in biomedical research, ILAR J., 38, 137–141.

    Article  PubMed  Google Scholar 

  7. Tacutu, R., Craig, T., Budovsky, A., Wuttke, D., Lehmann, G., Taranukha, D., Costa, J., Fraifeld, V. E., and De Magalhaes, J. P. (2013) Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing, Nucleic Acids Res., 41, D1027–D1033.

    Article  CAS  PubMed  Google Scholar 

  8. Brouwer, K., Jones, M. L., King, C. E., and Schifter, H. (2000) Longevity records for Psittaciformes in captivity, Int. Zoo Yearbook, 37, 299–316.

    Article  Google Scholar 

  9. Young, A. M., Hobson, E. A., Lackey, L. B., and Wright, T. F. (2012) Survival on the ark: life history trends in captive parrots, Anim. Conserv., 15, 28–53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lindstedt, S. L., and Calder, W. A. (1976) Body size and longevity in birds, Condor, 78, 91–94.

    Article  Google Scholar 

  11. Austad, S. N. (2011) Candidate bird species for use in aging research, ILAR J., 52, 89–96.

    Article  CAS  PubMed  Google Scholar 

  12. Holmes, D. J., and Austad, S. N. (1995) Birds as animal models for the comparative biology of aging: a prospectus, J. Gerontol. A Biol. Sci. Med. Sci., 50, B59–66.

    Article  CAS  PubMed  Google Scholar 

  13. Prinzinger, R. (1993) Life-span in birds and the aging theory of absolute metabolic scope, Comp. Biochem. Phys. A, 105, 609–615.

    Article  Google Scholar 

  14. Hulbert, A. J., Pamplona, R., Buffenstein, R., and Buttemer, W. A. (2007) Life and death: metabolic rate, membrane composition, and lifespan of animals, Physiol. Rev., 87, 1175–1213.

    Article  CAS  PubMed  Google Scholar 

  15. Gosden, R. (1996) Cheating Time: Science, Sex, and Aging, W. H. Freeman & Company, New York.

    Google Scholar 

  16. Austad, S. N., and Fischer, K. E. (1991) Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials, J. Gerontol., 46, B47–53.

    Article  CAS  PubMed  Google Scholar 

  17. Munshi-South, J., and Wilkinson, G. S. (2010) Bats and birds: exceptional longevity despite high metabolic rates, Ageing Res. Rev., 9, 12–19.

    Article  CAS  PubMed  Google Scholar 

  18. Medawar, P. B. (1952) An Unsolved Problem of Biology, H. K. Lewis, London.

    Google Scholar 

  19. Healy, K., Guillerme, T., Finlay, S., Kane, A., Kelly, S. B. A., McClean, D., Kelly, D. J., Donohue, I., Jackson, A. L., and Cooper, N. (2014) Ecology and mode-of-life explain lifespan variation in birds and mammals, Proc. R Soc. B, 281.

    Google Scholar 

  20. Austad, S. N. (1993) Retarded senescence in an insular population of virginia opossums (Didelphis-Virginiana), J. Zool., 229, 695–708.

    Article  Google Scholar 

  21. Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015) Aging as an evolvability-increasing program which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.

    Article  PubMed  Google Scholar 

  22. Edrey, Y. H., Hanes, M., Pinto, M., Mele, J., and Buffenstein, R. (2011) Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research, ILAR J., 52, 41–53.

    Article  CAS  PubMed  Google Scholar 

  23. Buffenstein, R., and Yahav, S. (1991) Is the naked mole-rat heterocephalus-glaber an endothermic yet poikilothermic mammal, J. Thermal. Biol., 16, 227–232.

    Article  Google Scholar 

  24. Park, T. J., Lu, Y., Juttner, R., Smith, E. S., Hu, J., Brand, A., Wetzel, C., Milenkovic, N., Erdmann, B., Heppenstall, P. A., Laurito, C. E., Wilson, S. P., and Lewin, G. R. (2008) Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber), PLoS Biol., 6, e13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Larson, J., and Park, T. J. (2009) Extreme hypoxia tolerance of naked mole-rat brain, Neuroreport, 20, 1634–1637.

    Article  PubMed  Google Scholar 

  26. Jarvis, J. U. M. (1981) Eusociality in a mammal–cooperative breeding in naked mole-rat colonies, Science, 212, 571–573.

    Article  CAS  PubMed  Google Scholar 

  27. Clubb, S. L., and Karpinski, L. (1993) Aging in Macaws, J. Ass. Avian Veter., 7, 31–33.

    Article  Google Scholar 

  28. Ottinger, M. A., Reed, E., Wu, J., Thompson, N., and French, J. B., Jr. (2003) Establishing appropriate measures for monitoring aging in birds: comparing short and long lived species, Exp. Gerontol., 38, 747–750.

    Article  PubMed  Google Scholar 

  29. Skulachev, V. P. (2005) How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers, IUBMB Life, 57, 305–310.

    Article  CAS  PubMed  Google Scholar 

  30. Rubner, M. (1908) Das Problem der Lebensdauer und seine Beziehung zu Wachstum und Ernahrung, Oldenbourg, Munchen-Berlin.

    Google Scholar 

  31. Barja, G., Cadenas, S., Rojas, C., Perezcampo, R., and Lopeztorres, M. (1994) Low mitochondrial free-radical production per unit O-2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic-rate in birds, Free Radic. Res., 21, 317–327.

    Article  CAS  PubMed  Google Scholar 

  32. Ku, H. H., and Sohal, R. S. (1993) Comparison of mitochondrial prooxidant generation and antioxidant defenses between rat and pigeon–possible basis of variation in longevity and metabolic potential, Mech. Ageing Dev., 72, 67–76.

    Article  CAS  PubMed  Google Scholar 

  33. Hickey, A. J. R., Jullig, M., Aitken, J., Loomes, K., Hauber, M. E., and Phillips, A. R. J. (2012) Birds and longevity: does flight driven aerobicity provide an oxidative sink? Ageing Res. Rev., 11, 242–253.

    Article  CAS  PubMed  Google Scholar 

  34. Montgomery, M. K., Hulbert, A. J., and Buttemer, W. A. (2011) The long life of birds: the rat–pigeon comparison revisited, PLoS One, 6.

    Google Scholar 

  35. Holmes, D., and Martin, K. (2009) A bird’s-eye view of aging: what’s in it for ornithologists? Auk, 126, 1–23.

    Article  Google Scholar 

  36. Pamplona, R., Portero-Otin, M., Riba, D., Ledo, F., Gredilla, R., Herrero, A., and Barja, G. (1999) Heart fatty acid unsaturation and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse, Aging Clin. Exp. Res., 11, 44–49.

    CAS  Google Scholar 

  37. Wu, X. W., Muzny, D. M., Lee, C. C., and Caskey, C. T. (1992) Independent mutational events in the loss of urate oxidase during hominoid evolution, J. Mol. Evol., 34, 78–84.

    Article  CAS  PubMed  Google Scholar 

  38. Feniouk, B. A., and Skulachev, V. P. (2016) Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants, Curr. Aging Sci., in press.

    Google Scholar 

  39. Delany, M. E., Krupkin, A. B., and Miller, M. M. (2000) Organization of telomere sequences in birds: evidence for arrays of extreme length and for in vivo shortening, Cytogenet. Cell Genet., 90, 139–145.

    Article  CAS  PubMed  Google Scholar 

  40. Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C. T., and Vleck, C. M. (2004) Telomerase expression is differentially regulated in birds of differing lifespan, Ann. N. Y. Acad. Sci., 1019, 186–190.

    Article  CAS  PubMed  Google Scholar 

  41. Sudyka, J., Arct, A., Drobniak, S., Gustafsson, L., and Cichoan, M. (2016) Longitudinal studies confirm faster telomere erosion in short-lived bird species, J. Ornithol., 157, 373–375.

    Article  Google Scholar 

  42. Vogel, G. (2015) Malaria may accelerate aging in birds, Science, 347, 362–362.

    Article  CAS  PubMed  Google Scholar 

  43. Braun, E. J., and Sweazea, K. L. (2008) Glucose regulation in birds, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 151, 1–9.

    Article  PubMed  Google Scholar 

  44. O’Donnell, J. A., 3rd, Garbett, R., and Morzenti, A. (1978) Normal fasting plasma glucose levels in some birds of prey, J. Wildl. Dis., 14, 479–481.

    Article  PubMed  Google Scholar 

  45. Else, P. L., Brand, M. D., Turner, N., and Hulbert, A. J. (2004) Respiration rate of hepatocytes varies with body mass in birds, J. Exp. Biol., 207, 2305–2311.

    Article  PubMed  Google Scholar 

  46. Carrillo-Infante, C., Abbadessa, G., Bagella, L., and Giordano, A. (2007) Viral infections as a cause of cancer, Int. J. Oncol., 30, 1521–1528.

    CAS  PubMed  Google Scholar 

  47. Ricklefs, R. E. (2006) Embryo development and ageing in birds and mammals, Proc. R Soc. B, 273, 2077–2082.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Skulachev, V. P., Holztze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Morhart, M., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2016) Neoteny and physiological phenomena of delay of aging program: from naked mole rats to “naked apes” (humans), Physiol. Rev., submitted.

    Google Scholar 

  49. Masoro, E. J. (2003) Subfield history: caloric restriction, slowing aging, and extending life, Sci. Aging Knowl. Environ., RE2.

    Google Scholar 

  50. Ottinger, M. A., Mobarak, M., Abdelnabi, M., Roth, G., Proudman, J., and Ingram, D. K. (2005) Effects of calorie restriction on reproductive and adrenal systems in Japanese quail: are responses similar to mammals, particularly primates? Mech. Ageing Dev., 126, 967–975.

    Article  CAS  PubMed  Google Scholar 

  51. Holmes, D. J., Fluckiger, R., and Austad, S. N. (2001) Comparative biology of aging in birds: an update, Exp. Gerontol., 36, 869–883.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Feniouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travin, D.Y., Feniouk, B.A. Aging in birds. Biochemistry Moscow 81, 1558–1563 (2016). https://doi.org/10.1134/S0006297916120178

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916120178

Key words

Navigation