Skip to main content

Vitamin D deficiency in Europeans today and in Viking settlers of Greenland


The vast majority of the Earth’s population lives between the 20th and 40th parallel north and south. It seems that right here humans have found the best living conditions relating not only to temperature and food recourses, but also to UV radiation necessary for the production of vitamin D by human skin. An exception to this general rule is Europe. Nearly half a billion people live between the 40th and 60th parallel north of the equator despite the fact that the amounts of UV radiation there are much lower. Moreover, since the time of the Vikings, there has always been a part of the European population that lived even further north than the 60th parallel (the northern parts of Europe, including Greenland). In this work, we present the potential role that vitamin D deficiency might have played in the extinction of the Vikings of Greenland. We analyze factors that contribute to the discrepancy between the theoretical distribution of areas with vitamin D deficiency and today’s reality, like the impact of civilization, religious traditions, as well as vitamin D supplementation in food products and as a biologically active dietary additive. The global migration of people on a scale and speed never seen before is now even more important for this discrepancy.

This is a preview of subscription content, access via your institution.


  1. 1.

    Göring, H., and Koshuchowa, S. (2015) Vitamin D–the sun hormone. Life in environmental mismatch, Biochemistry (Moscow), 80, 14–28.

    Article  Google Scholar 

  2. 2.

    Villmoare, B., Kimbel, W. H., Seyoum, C., Campisano, C. J., DiMaggio, E. N., Rowan, J., Braun, D. R., Arrowsmith, J. R., and Reed, K. E. (2015) Early homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia, Science, 347, 1352–1355.

    CAS  Google Scholar 

  3. 3.

    Kummu, M., and Varis, O. (2011) The world by latitudes: A global analysis of human population, development level and environment across the north-south axis over the past half century, Appl. Geogr., 31, 495–507.

    Article  Google Scholar 

  4. 4.

    Grigalavicius, M., Juzeniene, A., Baturaite, Z., Dahlback, A., and Moan, J. (2013) Biologically efficient solar radiation: vitamin D production and induction of cutaneous malignant melanoma, Dermatoendocrinology, 5, 150–158.

    Article  Google Scholar 

  5. 5.

    Jablonski, N. G., and Chaplin, G. (2010) Human skin pigmentation as an adaption to UV radiation, Proc. Natl. Acad. Sci. USA, 107, 8962–8968.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Jablonski, N. G., and Chaplin, G. (2012) Human skin pigmentation, migration and disease susceptibility, Philos. Trans. R Soc. Lond. B Biol. Sci., 367, 785–792.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Holick, M. F. (2013) Vitamin D and health: evolution, biologic functions, and recommendeddietary intakes for vitamin D, in Vitamin D Physiology, Molecular Biology, and Clinical Applications (Holick, M. F., ed.) Humana Press Inc, New York, pp. 3–33.

    Google Scholar 

  8. 8.

    Holick, M. F., Chen, T. C., Lu, Z., and Sauter, E. (2007) Vitamin D and skin physiology: a D-lightful story, J. Bone Miner Res., 22, Suppl. 2, V28–33.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Webb, A. R., Kline, L., and Holick, M. F. (1988) Influence of saison and latitudeon the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin, J. Clin. Endocrinol. Metab., 67, 373–378.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Jablonski, N. G., and Chaplin, G. (2000) The evolution of human skin coloration, J. Hum. Evol., 39, 57–106.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Gillie, O. (2012) The Scot’s paradox: can sun exposure, or lack of it, explain major paradoxes in epidemiology? Anticancer Res., 32, 237–248.

    CAS  PubMed  Google Scholar 

  12. 12.

    Gillie, O. (2010) Sunlight robbery: A critique of public health policy on vitamin D in the UK, Mol. Nutr. Food Res., 54, 1148–1163.

    CAS  PubMed  Google Scholar 

  13. 13.

    Gillie, O. (2016) Controlled trials of vitamin D, causality and type 2 statistical error, Public Health Nutr., 19, 409–414.

    Article  PubMed  Google Scholar 

  14. 14.

    Hanlon, P., Lawder, R., and Buchanan, D. (2005) Why is mortality higher in Scotland than in England and Wales? Decreasing influence of socioeconomic deprivation between 1981 and 2001 supports the existence of the “Scottish effect”, J. Public Health (Oxford), 27, 199–204.

    CAS  Article  Google Scholar 

  15. 15.

    Chaplin, G., and Jablonski, N. G. (2013) The human environment and the vitamin D compromise: Scotland as a case study in human biocultural adaptation and disease susceptibility, Hum. Biol., 85, 529–552.

    Article  PubMed  Google Scholar 

  16. 16.

    Pludowski, P., Karczmarewicz, E., Bayer, M., Carter, G., Chlebna-Sokol, D., Czech-Kowalska, J., Debski, R., Decsi, T., Dobrzanska, A., Franek, E., Gluszko, P., Grant, W. B., Holick, M. F., Yankovskaya, L., Konstantynowicz, J., Ksiazyk, J. B., Ksiezopolska-Orlowska, K., Lewinski, A., Litwin, M., Lohner, S., Lorenc, R. S., Lukaszkiewicz, J., Marcinowska-Suchowierska, E., Milewicz, A., Misiorowski, W., Nowicki, M., Povoroznyuk, V., Rozentryt, P., Rudenka, E., Shoenfeld, Y., Socha, P., Solnica, B., Szalecki, M., Talalaj, M., Varbiro, S., and Zmijewski, M. A. (2013) Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe–recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency, Endokrynol. Pol., 64, 319–327.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Pludowski, P., Grant, W. B., Bhattoa, H. P., Bayer, M., Povoroznyuk, V., Rudenka, E., Ramanau, H., Varbiro, S., Rudenka, A., Karczmarewicz, E., Lorenc, R., Czech-Kowalska, J., and Konstantynowicz, J. (2014) Vitamin D status in Central Europe, Int. J. Endocrinol., 589587.

    Google Scholar 

  18. 18.

    Norlund, P. (1937) Wikingersiedlungen in Grönland. Ihre Entstehung und Ihr Schicksal, Curt Kabitzsch Verlag, Leipzig.

    Google Scholar 

  19. 19.

    Keller, L., and Waller, D. (2002) Inbreeding effects in wild population, Trends Ecol. Evol., 17, 230–241.

    Article  Google Scholar 

  20. 20.

    Acevedo-Whitehouse, K., Gulland, F., Greig, D., and Amos, W. (2003) Inbreeding: disease susceptibility in California sea lions, Nature, 422, 35.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    McParland, S., Kearney, J. F., Rath, M., and Berry, D. P. (2007) Inbreeding effects on milk production, calving performance, fertility, and conformation in Irish Holstein-Friesians, J. Dairy Sci., 90, 4411–4419.

    CAS  Article  Google Scholar 

  22. 22.

    Huisman, J., Kruuk, L., Ellis, P., Clutton-Brock, T. H., and Pemberton, J. M. (2016) Inbreeding depression across the lifespan in a wild mammal population, Proc. Natl. Acad. Sci. USA, 113, 3585–3590.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Göring, H., and Mitchenkova, T. A. (1961) Einige Fragen der Physiologie von Maispflanzen, die eine unterschiedliche Vitalität besitzen [in Russian], Agrobiologiya (Moscow), 383–389.

    Google Scholar 

  24. 24.

    Charlesworth, D., and Willis, J. (2009) The genetics of inbreding depression, Nat. Rev. Genet., 10, 783–796.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Göring, H. (1963) Zellteilungsstörungen nach Selbstung bei Zea mays L., Biol. Rundschau, 1, 41–42.

    Google Scholar 

  26. 26.

    Yuen, A. W. C., and Jablonski, N. G. (2010) Vitamin D: in the evolution of human skin colour, Med. Hypotheses, 74, 39–44.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Murray, F. G. (1934) Pigmentation, sunlight, and nutritional disease, Am. Anthropol., 36, 438–445.

    Article  Google Scholar 

  28. 28.

    Chen, T. C. Lu, Z., and Holick, M. F. (2013) Photobiology of vitamin D, in Vitamin D Physiology, Molecular Biology, and Clinical Applications (Holick, M. F., ed.) Human Press Inc., New York, pp. 35-60.

    Google Scholar 

  29. 29.

    Lu, Z., Chen, T. C., and Holick, M. F. (1992) Influence of saison and timeof day on the synthesis of vitamin D3, in Biological Effects of Light (Holick, M. F., and Kligman, A. M., eds.) Walter de Gruyter, Berlin-New York, pp. 57–61.

    Google Scholar 

  30. 30.

    Mithal, A., Wahl, D. A., Bonjour, J. P., Burckhardt, P., Dawson-Hughes, B., Eisman, J. A., Fulican, G. E., Joss, R. G., Lips, P., and Morales-Torres, J. (2009) Global vitamin D status and determinants of hypovitaminosis D, Osteoporos. Int., 20, 1807–1820.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Brickley, M. B., Moffat, T., and Watamaniuk, L. (2014) Biocultural perspectives of vitamin D deficiency in the past, J. Anthropol. Archaeol., 36, 48–59.

    Article  Google Scholar 

  32. 32.

    Bogaczewicz, J., Karczmarewicz, E., Pludowski, P., Zabek, J., and Wozniacka, A. (2016) Requirement for vitamin D supplementation in patients using photoprotection: variations in vitamin D levels and bone formation markers, Int. J. Dermatol., 55, 176–183.

    Article  Google Scholar 

  33. 33.

    Grant, W. B., Wimalawansa, S. J., Holick, M. F., Cannell, J. J., Pludowski, P., Lappe, J. M., Pittaway, M., and May, P. (2015) Emphasizing the health benefits of vitamin D for those with neurodevelopmental disorders and intellectual disabilities, Nutrients, 7, 1538–1564.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Buyukuslu, N., Esin, K., Hizli, H., Sunal, N., Yigit, P., and Garipagaoglu, M. (2014) Clothing preference affects vitamin D status of young women, Nutr. Res., 34, 688–693.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Tsur, A., Metzger, M., and Dresner-Pollak, R. (2011) Effect of different dress style on vitamin D level in healthy young Orthodox and ultra-Orthodox students in Israel, Osteoporos. Int., 22, 2895–2898.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Martin, C. A., Gowda, U., and Renzaho, A. M. (2016) The prevalence of vitamin D deficiency among dark-skinned populations according to their stage of migration and region of birth: a meta-analysis, Nutrition, 32, 21–32.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Zittermann, A., Pilz, S., Hoffmann, H., and Marz, W. (2016) Vitamin D and airway infections: a European perspective, Eur. J. Med. Res., 21, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Rautiainen, S., Manson, J. E., Lichtenstein, A. H., and Sesso, H. D. (2016) Dietary supplements and disease prevention–a global overview, Nat. Rev. Endocrinol., 12, 407–420.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Rubel, F., and Kottek, M. (2010) Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen–Geiger climate classification, Meteorol. Zeit., 19, 135–141.

    Article  Google Scholar 

  40. 40.

    Klein Goldewijk, K., Beusen, A., and Janssen, P. (2010) Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1, Holocene, 20, 565–573.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H. Göring.

Additional information

Original Russian Text © H. Göring, S. Koshuchowa, 2016, published in Biokhimiya, 2016, Vol. 81, No. 12, pp. 1777–1783.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Göring, H., Koshuchowa, S. Vitamin D deficiency in Europeans today and in Viking settlers of Greenland. Biochemistry Moscow 81, 1492–1497 (2016).

Download citation

Key words

  • vitamin D (deficiency)
  • UV radiation
  • Europe
  • Greenland
  • Vikings
  • Scottish paradox