Skip to main content
Log in

Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity

  • Phenoptosis (Special Issue)
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Experimental adaptation of Drosophila melanogaster to nutrient-deficient starch-based (S) medium resulted in lifespan shortening, increased early-life fecundity, accelerated reproductive aging, and sexually dimorphic survival curves. The direction of all these evolutionary changes coincides with the direction of phenotypic plasticity observed in non-adapted flies cultured on S medium. High adult mortality rate caused by unfavorable growth medium apparently was the main factor of selection during the evolutionary experiment. The results are partially compatible with Williams’ hypothesis, which states that increased mortality rate should result in relaxed selection against mutations that decrease fitness late in life, and thus promote the evolution of shorter lifespan and earlier reproduction. However, our results do not confirm Williams’ prediction that the sex with higher mortality rate should undergo more rapid aging: lifespan shortening by S medium is more pronounced in naive males than females, but it was female lifespan that decreased more in the course of adaptation. These data, as well as the results of testing of F1 hybrids between adapted and control lineages, are compatible with the idea that the genetic basis of longevity is different in the two sexes, and that evolutionary response to increased mortality rate depends on the degree to which the mortality is selective. Selective mortality can result in the development of longer (rather than shorter) lifespan in the course of evolution. The results also imply that antagonistic pleiotropy of alleles, which increase early-life fecundity at the cost of accelerated aging, played an important role in the evolutionary changes of females in the experimental lineage, while accumulation of deleterious mutations with late-life effects due to drift was more important in the evolution of male traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., and Whitlock, M. C. (2012) Experimental evolution, Trends Ecol. Evol., 27, 547–560.

    Article  PubMed  Google Scholar 

  2. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  3. Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Clarendon, Oxford.

    Book  Google Scholar 

  4. Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Programmed and altruistic ageing, Nat. Rev. Genet., 11, 866–872.

    Google Scholar 

  5. Markov, A. V. (2012) Can kin selection facilitate the evolution of the genetic program of senescence? Biochemistry (Moscow), 77, 733–741.

    Article  CAS  Google Scholar 

  6. Woods, R. J., Barrick, J. E., Cooper, T. F., Shrestha, U., Kauth, M. R., and Lenski, R. E. (2011) Second-order selection for evolvability in a large Escherichia coli population, Science, 331, 1433–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.

    Article  CAS  PubMed  Google Scholar 

  8. Rose, M. (1991) Evolutionary Biology of Aging, Oxford University Press, Oxford.

    Google Scholar 

  9. Williams, G. C. (1957) Pleiotropy, natural selection, and the evolution of senescence, Evolution, 11, 398–411.

    Article  Google Scholar 

  10. Medawar, P. B. (1952) An Unsolved Problem of Biology, HK Lewis, London.

    Google Scholar 

  11. Haldane, J. B. S. (1941) New Paths in Genetics, Allen and Unwin, London, UK.

    Google Scholar 

  12. Wattiaux, J. M. (1968) Cumulative parental age effects in Drosophila subobscura, Evolution, 22, 406–421.

    Article  Google Scholar 

  13. Rose, M. R., and Charlesworth, B. (1981) Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments, Genetics, 97, 187–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rose, M. R. (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster, Evolution, 38, 1004–1010.

    Article  Google Scholar 

  15. Luckinbill, L. S., Arking, R., Clare, M. J., Cirocco, W. C., and Buck, S. A. (1984) Selection for delayed senescence in Drosophila melanogaster, Evolution, 38, 996–1003.

    Article  Google Scholar 

  16. Mueller, L. D. (1987) Evolution of accelerated senescence in laboratory populations of Drosophila, Proc. Natl. Acad. Sci. USA, 84, 1974–1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Partridge, L., and Fowler, K. (1992) Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster, Evolution, 46, 76–91.

    Article  Google Scholar 

  18. Partridge, L., Prowse, N., and Pignatelli, P. (1999) Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster, Proc. R Soc. Lond. B Biol. Sci., 266, 255–261.

    Article  CAS  Google Scholar 

  19. Travers, L. M., Garcia-Gonzalez, F., and Simmons, L. W. (2015) Live fast die young life history in females: evolutionary trade-off between early life mating and lifespan in female Drosophila melanogaster, Sci. Rep., 5, 15469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stearns, S. C., Ackermann, M., Doebeli, M., and Kaiser, M. (2000) Experimental evolution of aging, growth, and reproduction in fruitflies, Proc. Natl. Acad. Sci. USA, 97, 3309–3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirkwood, T. B. (1977) Evolution of ageing, Nature, 270, 301–304.

    Article  CAS  PubMed  Google Scholar 

  22. Kirkwood, T. B., and Rose, M. R. (1991) Evolution of senescence: late survival sacrificed for reproduction, Philos. Trans. R Soc. Lond. Ser. B Biol. Sci., 332, 15–24.

    Article  CAS  Google Scholar 

  23. Sgro, C. M., and Partridge, L. (1999) A delayed wave of death from reproduction in Drosophila, Science, 286, 2521–2524.

    Article  CAS  PubMed  Google Scholar 

  24. Linnen, C., Tatar, M., and Promislow, D. (2001) Cultural artifacts: a comparison of senescence in natural, laboratory-adapted and artificially selected lines of Drosophila melanogaster, Evol. Ecol. Res., 3, 877–888.

    Google Scholar 

  25. Abrams, P. A. (1993) Does increased mortality favor the evolution of more rapid senescence? Evolution, 47, 877–887.

    Article  Google Scholar 

  26. Reznick, D. N., Bryant, M. J., Roff, D., Ghalambor, C. K., and Ghalambor, D. E. (2004) Effect of extrinsic mortality on the evolution of senescence in guppies, Nature, 431, 1095–1099.

    Article  CAS  PubMed  Google Scholar 

  27. Williams, P. D., Day, T., Fletcher, Q., and Rowe, L. (2006) The shaping of senescence in the wild, Trends Ecol. Evol., 21, 458–463.

    Article  PubMed  Google Scholar 

  28. Chen, H., and Maklakov, A. A. (2012) Longer life span evolves under high rates of condition-dependent mortality, Curr. Biol., 22, 2140–2143.

    Article  CAS  PubMed  Google Scholar 

  29. Reznick, D. N., Shaw, F. H., Rodd, F. H., and Shaw, R. G. (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata), Science, 275, 1934–1937.

    Article  CAS  PubMed  Google Scholar 

  30. Williams, P. D., and Day, T. (2003) Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence, Evolution, 57, 1478–1488.

    Article  PubMed  Google Scholar 

  31. Markov, A. V., Ivnitsky, S. B., Kornilova, M. B., Naimark, E. B., Shirokova, N. G., and Perfilieva, K. S. (2015) Maternal effect obscures adaptation to adverse environments and hinders divergence in Drosophila melanogaster, Zh. Obshch. Biol., 76, 429–437.

    CAS  PubMed  Google Scholar 

  32. Markov, A. V., Naimark, E. B., and Yakovleva, E. U. (2016) Temporal scaling of age-dependent mortality: dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable (on the paper by Stroustrup et al. entitled “The temporal scaling of Caenorhabditis elegans ageing” published in Nature, 530, 103–107 (2016)), Biochemistry (Moscow), 81, 1145–1152.

    Article  Google Scholar 

  33. Mousseau, T. A., Uller, T., Wapstra, E., and Badyaev, A. V. (2009) Evolution of maternal effects: past and present, Philos. Trans. R Soc. B, 364, 1035–1038.

    Article  Google Scholar 

  34. Francis, A. (2008) Business Mathematics and Statistics, 6th Edn., Cengage Learning EMEA, UK.

    Google Scholar 

  35. Tukey, J. (1949) Comparing individual means in the analysis of variance, Biometrics, 5, 99–114.

    Article  CAS  PubMed  Google Scholar 

  36. R Core Team (2015) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  37. Chen, H., and Maklakov, A. A. (2014) Condition dependence of male mortality drives the evolution of sex differences in longevity, Curr. Biol., 24, 2423–2427.

    Article  CAS  PubMed  Google Scholar 

  38. Waddington, C. H. (1953) Genetic assimilation of acquired characters, Evolution, 7, 118–126.

    Article  Google Scholar 

  39. Stroustrup, N., Anthony, W. E., Nash, Z. M., Gowda, V., Gomez, A., Lopez-Moyado, I. F., Apfeld, J., and Fontana, W. (2016) The temporal scaling of Caenorhabditis elegans ageing, Nature, 530, 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nuzhdin, S. V., Pasyukova, E. G., Dilda, C. L., Zeng, Z. B., and Mackay, T. F. (1997) Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 94, 9734–9739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lehtovaara, A., Schielzeth, H., Flis, I., and Friberg, U. (2013) Heritability of life span is largely sex limited in Drosophila, Am. Nat., 182, 653–665.

    Article  PubMed  Google Scholar 

  42. Clarke, J. M., and Smith, M. J. (1955) The genetics and cytology of Drosophila subobscura, XI. Hybrid vigor and longevity, J. Genet., 53, 172–180.

    Article  Google Scholar 

  43. Rose, M. R., Drapeau, M. D., Yazdi, P. G., Shah, K. H., Moise, D. B., Thakar, R. R., Rauser, C. L., and Mueller, L. D. (2002) Evolution of late-life mortality in Drosophila melanogaster, Evolution, 56, 1982–1991.

    Article  PubMed  Google Scholar 

  44. Gems, D., Sutton, A. J., Sundermeyer, M. L., Albert, P. S., King, K. V., Edgley, M. L., Larsen, P. L., and Riddle, D. L. (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans, Genetics, 150, 129–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P. C., Cervera, P., and Le Bouc, Y. (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice, Nature, 421, 182–187.

    Article  CAS  PubMed  Google Scholar 

  46. Toivonen, J. M., and Partridge, L. (2009) Endocrine regulation of ageing and reproduction in Drosophila, Mol. Cell. Endocrinol., 299, 39–50.

    Article  CAS  PubMed  Google Scholar 

  47. Crispo, E. (2007) The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity, Evolution, 61, 2469–2479.

    Article  PubMed  Google Scholar 

  48. Iordanskij, N. N. (2009) Phenotypic plasticity and evolution of organisms, Zh. Obshch. Biol., 70, 3–9.

    Google Scholar 

  49. Fitzpatrick, B. M. (2012) Underappreciated consequences of phenotypic plasticity for ecological speciation, Int. J. Ecol., http://dx.doi.org/10.1155/2012/256017.

    Google Scholar 

  50. Ghalambor, C. K., Hoke, K. L., Ruell, E. W., Fischer, E. K., Reznick, D. N., and Hughes, K. A. (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature, Nature, 525, 372–375.

    Article  CAS  PubMed  Google Scholar 

  51. Grether, G. F. (2005) Environmental change, phenotypic plasticity, and genetic compensation, Am. Nat., 166, 115–123.

    Article  Google Scholar 

  52. Partridge, L., Alic, N., Bjedov, I., and Piper, M. D. W. (2011) Ageing in Drosophila: The role of the insulin/Igf and TOR signaling network, Exp. Gerontol., 46, 376–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pasco, M. Y., and Leopold, P. (2012) High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo, PLoS One, 7, e36583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rauser, C. L., Tierney, J. J., Gunion, S. M., Covarrubias, G. M., Mueller, L. D., and Rose, M. R. (2006) Evolution of late-life fecundity in Drosophila melanogaster, J. Evol. Biol., 19, 289–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. U. Yakovleva.

Additional information

Original Russian Text © E. U. Yakovleva, E. B. Naimark, A. V. Markov, 2016, published in Biokhimiya, 2016, Vol. 81, No. 12, pp. 1721–1739.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, E.U., Naimark, E.B. & Markov, A.V. Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity. Biochemistry Moscow 81, 1445–1460 (2016). https://doi.org/10.1134/S0006297916120063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916120063

Key words

Navigation