Skip to main content
Log in

Uncouplers of oxidation and phosphorylation as antiaging compounds

  • Phenoptosis (Special Issue)
  • Mini-Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Food restriction causes a set of physiological changes that reduce the rate of aging. At the level of an organism, these changes are initiated by a hormonal response, which in turn activates certain intracellular signaling cascades. As a result, cells increase their antioxidant capacities and decrease the risk of cancerous transformation. A number of small molecule compounds activating these signaling cascades have been described. One could expect that direct pharmacological activation of the signaling can produce a stronger antiaging effect than that achieved by the indirect hormonal stimulation. Data from the literature point to the opposite. Possibly, a problem with pharmacological activators is that they cause generation of mitochondrial reactive oxygen species. Indeed, hyperpolarized mitochondria are known to induce oxidative stress. Such hyperpolarization could happen because of artificial activation of cellular response to caloric restriction in the absence of energy deficit. At the same time, energy deficit seems likely to be a natural consequence of the shortage of nutrients. Thus, there is a possibility that combining the pharmacological activators with compounds that decrease mitochondrial transmembrane potential, uncouplers, could be a powerful antiaging strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AICAR:

5-aminoimidazole-4-carboxamide ribonucleoside

AMPK:

AMP-dependent protein kinase

CR:

caloric restriction

C12TPP:

dodecyltriphenylphosphonium

FCCP:

carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone

GH:

growth hormone (somatotropin)

IGF1:

insulin-like growth factor 1

ROS:

reactive oxygen species

References

  1. Spindler, S. R. (2010) Caloric restriction: from soup to nuts, Ageing Res. Rev., 9, 324–353.

    Article  CAS  PubMed  Google Scholar 

  2. Ruiz, R., Pedrez-Villegas, E. M., and Manuel Carrion, A. (2016) AMPK function in aging process, Curr. Drug Targets, 17, 932–941.

    Article  CAS  PubMed  Google Scholar 

  3. Burkewitz, K., Zhang, Y., and Mair, W. B. (2014) AMPK at the nexus of energetics and aging, Cell Metab., 20, 10–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verdin, E. (2015) NAD+ in aging, metabolism, and neurodegeneration, Science, 350, 1208–1213.

    Article  CAS  PubMed  Google Scholar 

  5. Gremeaux, V., Gayda, M., Lepers, R., Sosner, P., Juneau, M., and Nigam, A. (2012) Exercise and longevity, Maturitas, 73, 312–317.

    Article  PubMed  Google Scholar 

  6. Lagisz, M., Hector, K. L., and Nakagawa, S. (2013) Life extension after heat shock exposure: assessing meta-analytic evidence for hormesis, Ageing Res. Rev., 12, 653–660.

    Article  PubMed  Google Scholar 

  7. Munkacsy, E., and Rea, S. L. (2014) The paradox of mitochondrial dysfunction and extended longevity, Exp. Gerontol., 56, 221–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ristow, M., and Zarse, K. (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis), Exp. Gerontol., 45, 410–418.

    Article  CAS  PubMed  Google Scholar 

  9. Sanli, T., Steinberg, G. R., Singh, G., and Tsakiridis, T. (2014) AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway, Cancer Biol. Ther., 15, 156–169.

    Article  CAS  PubMed  Google Scholar 

  10. Kahn, B. B., Alquier, T., Carling, D., and Hardie, D. G. (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism, Cell Metab., 1, 15–25.

    Article  CAS  PubMed  Google Scholar 

  11. Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H. G., and Kowaltowski, A. J. (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity, Aging Cell, 7, 552–560.

    Article  CAS  PubMed  Google Scholar 

  12. Ruderman, N. B., Xu, X. J., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F., and Ido, Y. (2010) AMPK and SIRT1: a long-standing partnership? Am. J. Physiol., 298, 137–163.

    Google Scholar 

  13. Ingram, D. K., and Roth, G. S. (2015) Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res. Rev., 20, 46–62.

    Article  PubMed  Google Scholar 

  14. Mercken, E. M., Carboneau, B. A., Krzysik-Walker, S. M., and De Cabo, R. (2012) Of mice and men: the benefits of caloric restriction, exercise, and mimetics, Ageing Res. Rev., 11, 390–398.

    Article  PubMed  Google Scholar 

  15. Testa, G., Biasi, F., Poli, G., and Chiarpotto, E. (2014) Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity, Curr. Pharm. Design., 20, 2950–2977.

    Article  CAS  Google Scholar 

  16. Green, D. R., Galluzzi, L., and Kroemer, G. (2014) Cell biology. Metabolic control of cell death, Science, 345, 1250256.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Seifert, E. L., Bezaire, V., Estey, C., and Harper, M.-E. (2008) Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export, J. Biol. Chem., 283, 25124–25131.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, C.-M., Almsherqi, Z. A., McLachlan, C. S., Matthews, S., Ramachandran, M., Tay, S. K. H., and Deng, Y. (2011) Acute starvation in C57BL/6J mice increases myocardial UCP2 and UCP3 protein expression levels and decreases mitochondrial bio-energetic function, Stress, 14, 66–72.

    Article  CAS  PubMed  Google Scholar 

  19. Suwa, M., Nakano, H., and Kumagai, S. (2003) Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles, J. Appl. Physiol., 95, 960–968.

    Article  CAS  PubMed  Google Scholar 

  20. Fedorenko, A., Lishko, P. V., and Kirichok, Y. (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria, Cell, 151, 400–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sluse, F. E., Jarmuszkiewicz, W., Navet, R., Douette, P., Mathy, G., and Sluse-Goffart, C. M. (2006) Mitochondrial UCPs: new insights into regulation and impact, Biochim. Biophys. Acta, 1757, 480–485.

    Article  CAS  PubMed  Google Scholar 

  22. Garlid, K. D., Jaburek, M., and Jezek, P. (2001) Mechanism of uncoupling protein action, Biochem. Soc. Trans., 29, 803–806.

    Article  CAS  PubMed  Google Scholar 

  23. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.

    Article  CAS  PubMed  Google Scholar 

  24. Skulachev, V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Quart. Rev. Biophys., 29, 169–202.

    Article  CAS  Google Scholar 

  25. Daval, M., Foufelle, F., and Ferre, P. (2006) Functions of AMP-activated protein kinase in adipose tissue, J. Physiol., 574, 55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Atkinson, D. E. (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry, 7, 4030–4034.

    Article  CAS  PubMed  Google Scholar 

  27. Klingenberg, M. (2008) The ADP and ATP transport in mitochondria and its carrier, Biochim. Biophys. Acta, 1778, 1978–2021.

    Article  CAS  PubMed  Google Scholar 

  28. Massudi, H., Grant, R., Guillemin, G. J., and Braidy, N. (2012) NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns, Redox Rep., 17, 28–46.

    Article  CAS  PubMed  Google Scholar 

  29. Hubbard, B. P., and Sinclair, D. A. (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases, Trends Pharmacol. Sci., 35, 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weisova, P., Anilkumar, U., Ryan, C., Concannon, C. G., Prehn, J. H. M., and Ward, M. W. (2012) “Mild mitochondrial uncoupling” induced protection against neuronal excitotoxicity requires AMPK activity, Biochim. Biophys. Acta, 1817, 744–753.

    Article  CAS  PubMed  Google Scholar 

  31. Zorov, D. B. (1996) Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these, Biochim. Biophys. Acta, 1275, 10–15.

    Article  PubMed  Google Scholar 

  32. Starkov, A. A. (1997) “Mild” uncoupling of mitochondria, Biosci. Rep., 17, 273–279.

    Article  CAS  PubMed  Google Scholar 

  33. Izyumov, D. S., Avetisyan, A. V., Pletjushkina, O. Y., Sakharov, D. V., Wirtz, K. W., Chernyak, B. V., and Skulachev, V. P. (2004) “Wages of Fear”: transient threefold decrease in intracellular ATP level imposes apoptosis, Biochim. Biophys. Acta, 1658, 141–147.

    Article  CAS  PubMed  Google Scholar 

  34. Bodur, C., Karakas, B., Timucin, A. C., Tezil, T., and Basaga, H. (2015) AMP-activated protein kinase couples 3-bromopyruvate-induced energy depletion to apoptosis via activation of FoxO3a and upregulation of proapoptotic Bcl-2 proteins, Mol. Carcinog., doi: 10.1002/mc.22411.

    Google Scholar 

  35. Shin, S., Buel, G. R., Wolgamott, L., Plas, D. R., Asara, J. M., Blenis, J., and Yoon, S. O. (2015) ERK2 mediates metabolic stress response to regulate cell fate, Mol. Cell, 59, 382–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meynet, O., Zunino, B., Happo, L., Pradelli, L. A., Chiche, J., Jacquin, M. A., Mondragon, L., Tanti, J. F., Taillan, B., Garnier, G., Reverso-Meinietti, J., Mounier, N., Michiels, J. F., Michalak. E. M., Carles, M., Scott, C. L., and Ricci, J. E. (2013) Caloric restriction modulates Mcl-1 expression and sensitizes lymphomas to BH3 mimetic in mice, Blood, 122, 2402–2411.

    Article  CAS  PubMed  Google Scholar 

  37. Tasyurek, H. M., Altunbas, H. A., Balci, M. K., and Sanlioglu, S. (2014) Incretins: their physiology and application in the treatment of diabetes mellitus, Diab. Metab. Res. Rev., 30, 354–371.

    Article  CAS  Google Scholar 

  38. Tian, L., and Jin, T. (2016) The incretin hormone GLP-1 and mechanisms underlying its secretion, J. Diabetes, http://dx.doi.org/10.1111/1753-0407.12439.

    Google Scholar 

  39. Reimann, F., and Gribble, F. M. (2016) Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion, J. Diab. Invest., 7 (Suppl. 1), 13–19.

    Article  CAS  Google Scholar 

  40. Svendsen, B., and Holst, J. J. (2016) Regulation of gut hormone secretion. Studies using isolated perfused intestines, Peptides, 77, 47–53.

    Article  CAS  PubMed  Google Scholar 

  41. Rorsman, P., and Braun, M. (2013) Regulation of insulin secretion in human pancreatic islets, Annu. Rev. Physiol., 75, 155–179.

    Article  CAS  PubMed  Google Scholar 

  42. Pais, R., Gribble, F. M., and Reimann, F. (2016) Stimulation of incretin secreting cells, Ther. Adv. Endocrinol. Metab., 7, 24–42.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brown-Borg, H. M., and Bartke, A. (2012) GH and IGF1: roles in energy metabolism of long-living GH mutant mice, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 67, 652–660.

    Article  Google Scholar 

  44. Bartke, A., Sun, L. Y., and Longo, V. (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity, Physiol. Rev., 93, 571–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Esteban, S., Garau, C., Aparicio, S., Moranta, D., Barcelo, P., Ramis, M., Tresguerres, J. A., and Rial, R. (2010) Improving effects of long-term growth hormone treatment on monoaminergic neurotransmission and related behavioral tests in aged rats, Rejuv. Res., 13, 707–716.

    Article  CAS  Google Scholar 

  46. Zouboulis, C. C., and Makrantonaki, E. (2012) Hormonal therapy of intrinsic aging, Rejuv. Res., 15, 302–312.

    Article  CAS  Google Scholar 

  47. Paredes, S. D., Forman, K. A., Garcia, C., Vara, E., Escames, G., and Tresguerres, J. A. F. (2014) Protective actions of melatonin and growth hormone on the aged cardiovascular system, Horm. Mol. Biol. Clin. Invest., 18, 79–88.

    CAS  Google Scholar 

  48. Bartke, A., List, E. O., and Kopchick, J. J. (2016) The somatotropic axis and aging: benefits of endocrine defects, Growth Horm. Res., 27, 41–45.

    Article  CAS  Google Scholar 

  49. Cheng, Z., Tseng, Y., and White, M. F. (2010) Insulin signaling meets mitochondria in metabolism, Trends Endocrinol. Metab., 21, 589–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharples, A. P., Hughes, D. C., Deane, C. S., Saini, A., Selman, C., and Stewart, C. E. (2015) Longevity and skeletal muscle mass: the role of IGF signaling, the sirtuins, dietary restriction and protein intake, Aging Cell, 14, 511–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hindupur, S. K., Gonzalez, A., and Hall, M. N. (2015) The opposing actions of target of rapamycin and AMP-activated protein kinase in cell growth control, Cold Spring Harb. Perspect. Biol., 7, a019141.

    Article  PubMed  Google Scholar 

  52. Blagosklonny, M. V. (2012) Prospective treatment of agerelated diseases by slowing down aging, Am. J. Pathol., 181, 1142–1146.

    Article  CAS  PubMed  Google Scholar 

  53. Xu, S., Cai, Y., and Wei, Y. (2014) mTOR signaling from cellular senescence to organismal aging, Aging Dis., 5, 263–273.

    PubMed  Google Scholar 

  54. McLeod, M., Breen, L., Hamilton, D. L., and Philp, A. (2016) Live strong and prosper: the importance of skeletal muscle strength for healthy ageing, Biogerontology, 17, 497–510.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Russell, A. P., Foletta, V. C., Snow, R. J., and Wadley, G. D. (2014) Skeletal muscle mitochondria: a major player in exercise, health and disease, Biochim. Biophys. Acta, 1840, 1276–1284.

    Article  CAS  PubMed  Google Scholar 

  56. Vina, J., Sanchis-Gomar, F., Martinez-Bello, V., and Gomez-Cabrera, M. C. (2012) Exercise acts as a drug; the pharmacological benefits of exercise, Br. J. Pharmacol., 167, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298–300.

    Article  CAS  PubMed  Google Scholar 

  58. Knorre, D. A., and Severin, F. F. (2012) Longevity and mitochondrial membrane potential, Biochemistry (Moscow), 77, 793–794.

    Article  CAS  Google Scholar 

  59. Kamour, A., George, N., Gwynnette, D., Cooper, G., Lupton, D., Eddleston, M., Thompson, J. P., Vale, J. A., Thanacoody, H. K., Hill, S., and Thomas, S. H. (2015) Increasing frequency of severe clinical toxicity after use of 2,4-dinitrophenol in the UK: a report from the National Poisons Information Service, Emerg. Med. J., 32, 383–386.

    Article  PubMed  Google Scholar 

  60. Grundlingh, J., Dargan, P. I., El-Zanfaly, M., and Wood, D. M. (2011) 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death, J. Med. Toxicol., 7, 205–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.

    Article  CAS  PubMed  Google Scholar 

  62. Antonenko, Y. N., Avetisyan, A. V., Cherepanov, D. A., Knorre, D. A., Korshunova, G. A., Markova, O. V., Ojovan, S. M., Perevoshchikova, I. V., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Smirnova, E. A., Sobko, A. A., Sumbatyan, N. V., Severin, F. F., and Skulachev, V. P. (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers, J. Biol. Chem., 286, 17831–17840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalinovich, A. V., Mattsson, C. L., Mohamed R. Youssef, M. R., Petrovic, N., Ost, M., Skulachev, V. P., and Shabalina, I. G. (2016) Mitochondria-targeted dodecyltriphenylphosphonium (C12TPP) combats high-fat 2 dietinduced obesity in mice, Int. J. Obesity, accepted manuscript.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Severin.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 12, pp. 1713–1720.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knorre, D.A., Severin, F.F. Uncouplers of oxidation and phosphorylation as antiaging compounds. Biochemistry Moscow 81, 1438–1444 (2016). https://doi.org/10.1134/S0006297916120051

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916120051

Key words

Navigation