Skip to main content
Log in

Knockdown of minichromosome maintenance proteins inhibits foci forming of mediator of DNA-damage checkpoint 1 in response to DNA damage in human esophageal squamous cell carcinoma TE-1 cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Esophageal squamous cell carcinoma (ESCC) has a high morbidity in China and its treatment depends greatly on adjuvant chemotherapy. However, DNA damage repair in cancer cells severely affects the outcome of treatment. This study investigated the potential mechanism regarding mediator of DNA-damage checkpoint 1 (MDC1) and minichromosome maintenance proteins (MCMs) during DNA damage in ESCC. Recombinant vectors of MDC1 and MCMs with tags were constructed and transfected into human ESCC cell line TE-1. Immunoprecipitation and mass spectrometry were performed to screen the MCMs interacting with MDC1, and direct interaction was confirmed by glutathione S-transferase (GST) pulldown assay in vitro. MCM2 and MCM6 were knocked down by shRNAs, after which chromatin fraction and foci forming of MDC1 upon bleomycin-induced DNA damage were examined. The results showed that MCM2/3/5/6 were immunoprecipitated by antibodies against the tag of MDC1 in TE-1 nuclei, and the GST pull-down assay indicated the direct interaction. Knockdown of MCM2 or MCM6 reduced the chromatin fraction of MDC1 according to Western blot results. Moreover, knockdown of MCM2 or MCM6 could significantly inhibit foci forming of MDC1 in TE-1 nuclei in response to bleomycin-induced DNA damage (p < 0.001). This study indicates the direct interaction between MDC1 and MCMs in TE-1 nuclei. Downregulation of MCMs can inhibit chromatin fraction and foci forming of MDC1 in TE-1 cells upon DNA damage, which suggests MCMs and MDC1 as potential targets to improve the outcome of chemotherapy in ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, C., Hu, Z., He, Z., Jia, W., Wang, F., Zhou, Y., Liu, Z., Zhan, Q., Liu, Y., Yu, D., Zhai, K., Chang, J., Qiao, Y., Jin, G., Liu, Z., Shen, Y., Guo, C., Fu, J., Miao, X., Tan, W., Shen, H., Ke, Y., Zeng, Y., Wu, T., and Lin, D. (2011) Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations, Nat. Genet., 43, 679–684.

    Article  CAS  PubMed  Google Scholar 

  2. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., LortetTieulent, J., and Jemal, A. (2015) Global cancer statistics, 2012, Cancer J. Clin., 65, 87–108.

    Article  Google Scholar 

  3. Van Heijl, M., Van Lanschot, J. J., Koppert, L. B., Van Berge Henegouwen, M. I., Muller, K., Steyerberg, E. W., Van Dekken, H., Wijnhoven, B. P., Tilanus, H. W., Richel, D. J., Busch, O. R., Bartelsman, J. F., Koning, C. C., Offerhaus, G. J., and Van der Gaast, A. (2008) Neoadjuvant chemoradiation followed by surgery versus surgery alone for patients with adenocarcinoma or squamous cell carcinoma of the esophagus (CROSS), BMC Surg., 8, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roth, J. A., Pass, H. I., Flanagan, M. M., Graeber, G. M., Rosenberg, J. C., and Steinberg, S. (1988) Randomized clinical trial of preoperative and postoperative adjuvant chemotherapy with cisplatin, vindesine, and bleomycin for carcinoma of the esophagus, J. Thorac. Cardiovasc. Surg., 96, 242–248.

    CAS  PubMed  Google Scholar 

  5. Liu, M., Hales, B. F., and Robaire, B. (2014) Effects of four chemotherapeutic agents, bleomycin, etoposide, cisplatin, and cyclophosphamide, on DNA damage and telomeres in a mouse spermatogonial cell line, Biol. Reprod., 90, 72.

    Article  PubMed  Google Scholar 

  6. Coster, G., and Goldberg, M. (2010) The cellular response to DNA damage: a focus on MDC1 and its interacting proteins, Nucleus, 1, 166–178.

    Article  PubMed  Google Scholar 

  7. Solier, S., and Pommier, Y. (2011) MDC1 cleavage by caspase-3: a novel mechanism for inactivating the DNA damage response during apoptosis, Cancer Res., 71, 906–913.

    Article  CAS  PubMed  Google Scholar 

  8. Mendez, J., and Stillman, B. (2000) Chromatin association of human origin recognition complex, Cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis, Mol. Cell. Biol., 20, 8602–8612.

    CAS  PubMed  Google Scholar 

  9. Han, X., Aslanian, A., Fu, K., Tsuji, T., and Zhang, Y. (2014) The interaction between checkpoint kinase 1 (Chk1) and the minichromosome maintenance (MCM) complex is required for DNA damage-induced Chk1 phosphorylation, J. Biol. Chem., 289, 24716–24723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Costantino, L., Sotiriou, S. K., Rantala, J. K., Magin, S., Mladenov, E., Helleday, T., Haber, J. E., Iliakis, G., Kallioniemi, O. P., and Halazonetis, T. D. (2014) Breakinduced replication repair of damaged forks induces genomic duplications in human cells, Science, 343, 88–91.

    Article  CAS  PubMed  Google Scholar 

  11. Okumura, H., Natsugoe, S., Matsumoto, M., Mataki, Y., Takatori, H., Ishigami, S., Takao, S., and Aikou, T. (2005) The predictive value of p53, p53R2, and p21 for the effect of chemoradiation therapy on oesophageal squamous cell carcinoma, Br. J. Cancer, 92, 284–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Okumura, H., Uchikado, Y., Setoyama, T., Matsumoto, M., Owaki, T., Ishigami, S., and Natsugoe, S. (2014) Biomarkers for predicting the response of esophageal squamous cell carcinoma to neoadjuvant chemoradiation therapy, Surg. Today, 44, 421–428.

    Article  CAS  PubMed  Google Scholar 

  13. McDonald, W. H., Tabb, D. L., Sadygov, R. G., MacCoss, M. J., Venable, J., Graumann, J., Johnson, J. R., Cociorva, D., and Yates, J. R. (2004) MS1, MS2, and SQT-three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and identifications, Rapid Commun. Mass Spectrom., 18, 2162–2168.

    CAS  PubMed  Google Scholar 

  14. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., and Gygi, S. P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome, J. Proteome Res., 2, 43–50.

    Article  CAS  PubMed  Google Scholar 

  15. Schwacha, A., and Bell, S. P. (2001) Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication, Mol. Cell, 8, 1093–1104.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi, T. S., Wigley, D. B., and Walter, J. C. (2005) Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase, Trends Biochem. Sci., 30, 437–444.

    Article  CAS  PubMed  Google Scholar 

  17. Li, N., Zhai, Y., Zhang, Y., Li, W., Yang, M., Lei, J., Tye, B. K., and Gao, N. (2015) Structure of the eukaryotic MCM complex at 3.8 Å, Nature, 524, 186–191.

    Article  CAS  PubMed  Google Scholar 

  18. Bleichert, F., Botchan, M. R., and Berger, J. M. (2015) Crystal structure of the eukaryotic origin recognition complex, Nature, 519, 321–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, K. Y., Bae, J. S., Yoon, S., and Hwang, D. S. (2014) Dephosphorylation of Orc2 by protein phosphatase 1 promotes the binding of the origin recognition complex to chromatin, Biochem. Biophys. Res. Commun., 448, 385–389.

    Article  CAS  PubMed  Google Scholar 

  20. Celeste, A., Difilippantonio, S., Difilippantonio, M. J., Fernandez-Capetillo, O., Pilch, D. R., Sedelnikova, O. A., Eckhaus, M., Ried, T., Bonner, W. M., and Nussenzweig, A. (2003) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility, Cell, 114, 371–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., and Jackson, S. P. (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks, Cell, 123, 1213–1226.

    Article  CAS  PubMed  Google Scholar 

  22. Shi, H., Zhu, S., Liu, Z., and Su, J. (2013) The impact to MDC1 and 53BP1 after silence H2AX in esophageal carcinoma ECA109, Basic Clin. Med., 33, 808–813.

    Google Scholar 

  23. Crevel, G., Hashimoto, R., Vass, S., Sherkow, J., Yamaquchi, M., Heck, M. M. S., and Cotterill, S. (2007) Differential requirements for MCM proteins in DNA replication in Drosophila S2 cells, PLoS One, 2, e833.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, X., Teng, Y., Yang, F., Wang, M., Hong, X., Ye, L. G., Gao, Y. N., and Chen, G. Y. (2015) MCM2 is a therapeutic target of lovastatin in human non-small cell lung carcinomas, Oncol. Rep., 33, 2599–2605.

    PubMed  Google Scholar 

  25. Olive, P. L., and Banath, J. P. (1993) Detection of DNA double-strand breaks through the cell cycle after exposure to X-rays, bleomycin, etoposide and 125IdUrd, Int. J. Radiat. Biol., 64, 349–358.

    Article  CAS  PubMed  Google Scholar 

  26. Lou, Z., and Chen, J. (2004) Use of siRNA to study the function of MDC1 in DNA damage responses, Methods Mol. Biol., 281, 179–187.

    CAS  PubMed  Google Scholar 

  27. Wang, Z., Zeng, Q., Chen, T., Liao, K., Bu, Y., Hong, S., and Hu, G. (2015) Silencing NFBD1/MDC1 enhances the radiosensitivity of human nasopharyngeal cancer CNE1 cells and results in tumor growth inhibition, Cell Death Dis., 6, e1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, Z. K., Zhu, S. C., Su, J. W., Wang, Y. X., Yang, J. J., Li, J., and Shen, W. B. (2010) Short hairpin RNA-mediated MDC1 gene silencing enhances the radiosensitivity of esophageal squamous cell carcinoma cell line ECA109, J. South Med. Univ., 30, 1830–1834.

    Google Scholar 

  29. Yuan, C., Bu, Y., Wang, C., Yi, F., Yang, Z., Huang, X., Cheng, L., Liu, G., Wang, Y., and Song, F. (2012) NFBD1/MDC1 is a protein of oncogenic potential in human cervical cancer, Mol. Cell. Biochem., 359, 333–346.

    Article  CAS  PubMed  Google Scholar 

  30. Toyokawa, G., Masuda, K., Daigo, Y., Cho, H. S., Yoshimatsu, M., Takawa, M., Hayami, S., Maejima, K., Chino, M., Field, H. I., Neal, D. E., Tsuchiya, E., Ponder, B. A., Maehara, Y., Nakamura, Y., and Hamamoto, R. (2011) Minichromosome Maintenance Protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer, Mol. Cancer, 10, 65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ha, S. A., Shin, S. M., Namkoong, H., Lee, H., Chio, G. W., Hur, S. Y., Kim, T. E., and Kim, J. W. (2004) Cancerassociated expression of minichromosome maintenance 3 gene in several human cancers and its involvement in tumorigenesis, Clin. Cancer Res., 10, 8386–8295.

    Article  CAS  PubMed  Google Scholar 

  32. Kato, H., Miyazaki, T., Fukai, Y., Nakajima, M., Sohda, M., Takita, J., Masuda, N., Fukuchi, M., Manda, R., Ojima, H., Tsukada, K., Asao, T., and Kuwano, H. (2003) A new proliferation marker, minichromosome maintenance protein 2, is associated with tumor aggressiveness in esophageal squamous cell carcinoma, J. Surg. Oncol., 84, 24–30.

    Article  CAS  PubMed  Google Scholar 

  33. Huang, B., Hu, B., Su, M., Tian, D., Guo, Y., Lian, S., Liu, Z., Wu, X., Li, Q., Zheng, R., and Gao, Y. (2011) Potential role of minichromosome maintenance protein 2 as a screening biomarker in esophageal cancer high-risk population in China, Hum. Pathol., 42, 808–816.

    Article  CAS  PubMed  Google Scholar 

  34. Goldberg, M., Stucki, M., Falck, J., D’ Amours, D., Rahman, D., Pappin, D., Bartek, J., and Jackson, S. P. (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint, Nature, 421, 952–956.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijie Wang.

Additional information

These authors contributed equally to this work.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-122, September 12, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wang, R., Wu, J. et al. Knockdown of minichromosome maintenance proteins inhibits foci forming of mediator of DNA-damage checkpoint 1 in response to DNA damage in human esophageal squamous cell carcinoma TE-1 cells. Biochemistry Moscow 81, 1221–1228 (2016). https://doi.org/10.1134/S0006297916100205

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100205

Key words

Navigation