Skip to main content
Log in

Participation of two carbonic anhydrases of the alpha family in photosynthetic reactions in Arabidopsis thaliana

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The expression of genes of two carbonic anhydrases (CA) belonging to the a-family, α-CA2 and α-CA4 (according to the nomenclature in N. Fabre et al. (2007) Plant Cell Environ., 30, 617-629), was studied in arabidopsis (Arabidopsis thaliana, var. Columbia) leaves. The expression of the At2g28210 gene coding α-CA2 decreased under increase in plant illumination, while the expression of the At4g20990 gene coding α-CA4 increased. Under conditions close to optimal for photosynthesis, in plants with gene At2g28210 knockout, the effective quantum yield of photosystem 2 and the light-induced accumulation of hydrogen peroxide in leaves were lower than in wild type plants, while the coefficient of non-photochemical quenching of leaf chlorophyll a fluorescence and the rate of CO2 assimilation in leaves were higher. In plants with At4g20990 gene knockout, the same characteristics changed in opposite ways relative to wild type. Possible mechanisms of the participation of αa-CA2 and α-CA4 in photosynthetic reactions are discussed, taking into account that protons can be either consumed or released in the reactions they catalyze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA:

carbonic anhydrase

Chl:

chlorophyll

PAR:

photosynthetically active radiation

PETC:

photosynthetic electron-transport chain

PS1:

photosystem 1

PS2:

photosystem 2

References

  1. Hewett-Emmett, D., and Tashian, R. E. (1996) Functional diversity, conservation, and convergence in the evolution of the α-, γ-, and γ-carbonic anhydrase gene families, Mol. Phylogenet. Evol., 5, 50–77.

    Article  CAS  PubMed  Google Scholar 

  2. Fabre, N., Reiter, I. M., Becuwe-Linka, N., Genty, B., and Rumeau, D. (2007) Characterization and expression analysis of genes encoding a and β carbonic anhydrases in Arabidopsis, Plant Cell Environ., 30, 617–629.

    Article  CAS  PubMed  Google Scholar 

  3. Sunderhaus, S., Dudkina, N. V., Jansch, L., Klodmann, J., Heinemeyer, J., Perales, M., Zabaleta, E., Boekema, E. J., and Braun, H.-P. (2006) Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants, J. Biol. Chem., 281, 6482–6488.

    Article  CAS  PubMed  Google Scholar 

  4. Fedorchuk, T., Rudenko, N., Ignatova, L., and Ivanov, B. (2014) The presence of soluble carbonic anhydrase in the thylakoid lumen of chloroplasts from Arabidopsis leaves, J. Plant Physiol., 171, 903–906.

    Article  CAS  PubMed  Google Scholar 

  5. Villarejo, A., Buren, S., Larsson, S., Dejardin, A., Monne, M., Rudhe, Ch., Karlsson, J., Jansson, S., Lerouge, P., Rolland, N., von Heijne, G., Grebe, M., Bako, L., and Samuelsson, G. (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast, Nat. Cell Biol., 7, 1224–1231.

    Article  PubMed  Google Scholar 

  6. Friso, G., Giacomelli, L., Ytterberg, A. J., Peltier, J.-B., Rudella, A., Sun, Q., and Van Wijka, K. J. (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database, Plant Cell, 16, 478–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moroney, J. V., Ma, Y., Frey, W. D., Fusilier, K. A., Pham, T. T., Simms, T. A., DiMario, R. J., Jing, J., and Mukherjee, B. (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles, Photosynth. Res., 109, 133–149.

    Article  CAS  PubMed  Google Scholar 

  8. Ivanov, B. N., Ignatova, L. K., and Romanova, A. K. (2007) Diversity in forms and functions of carbonic anhydrase in terrestrial higher plants, Russ. J. Plant Physiol., 54, 143–162.

    Article  CAS  Google Scholar 

  9. Rudenko, N. N., Ignatova, L. K., Fedorchuk, T. P., and Ivanov, B. N. (2015) Carbonic anhydrases in photosynthetic cells of higher plants, Biochemistry (Moscow), 80, 674–687.

    Article  CAS  Google Scholar 

  10. Majeau, N., Arnoldo, M. A., and Coleman, J. R. (1994) Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco, Plant Mol. Biol., 25, 377–385.

    Article  CAS  PubMed  Google Scholar 

  11. Price, G. D., Von Caemmerer, S., Evans, J. R., Yu, J.-W., Lloyd, J., Oja, V., Kell, P., Harrison, K., Gallagher, A., and Badger, M. R. (1994) Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation, Planta, 193, 331–340.

    Article  CAS  Google Scholar 

  12. Zhurikova, E. M., Ignatova, L. K., Semenova, G. A., Rudenko, N. N., Mudrik, V. A., and Ivanov, B. N. (2015) Effect of knockout of a-carbonic anhydrase 4 gene on photosynthetic characteristics and starch accumulation in leaves of Arabidopsis thaliana, Russ. J. Plant Physiol., 62, 564–569.

    Article  CAS  Google Scholar 

  13. Quick, W. P., and Stitt, M. (1989) An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves, Biochim. Biophys. Acta, 977, 287–296.

    Article  CAS  Google Scholar 

  14. Nilkens, M., Kress, E., Lambrev, P., Miloslavina, Y., Muller, M., Holzwarth, A. R., and Jahns, P. (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis, Biochim. Biophys. Acta, 1797, 466–475.

    Article  CAS  PubMed  Google Scholar 

  15. Ivanov, B. N., Khorobrykh, S. A., Kozuleva, M. A., and Borisova-Mubarakshina, M. M. (2014) The role of oxygen and its reactive forms in photosynthesis, in Contemporary Problems of Photosynthesis (Allakhverdiev, S. I., Rubin, A. B., and Shauvalov, V. A., eds.) Izhevsk Institute of Computer Science, Moscow-Izhevsk, pp. 407–460.

    Google Scholar 

  16. Ruban, A. V. (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage, Plant Physiol., 170, 1903–1916.

    Article  CAS  PubMed  Google Scholar 

  17. Lu, Y. K., and Stemler, A. J. (2002) Extrinsic photosystem II carbonic anhydrase in maize mesophyll chloroplasts, Plant Physiol., 128, 643–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khristin, M. S., Ignatova, L. K., Rudenko, N. N., Ivanov, B. N., and Klimov, V. V. (2004) Photosystem II associated carbonic anhydrase activity in higher plants is situated in core complex, FEBS Lett., 577, 305–308.

    Article  CAS  PubMed  Google Scholar 

  19. Ignatova, L. K., Rudenko, N. N., Khristin, M. S., and Ivanov, B. N. (2006) Heterogeneous nature of carbonic anhydrase activity in thylakoid membranes, Biochemistry (Moscow), 71, 525–632.

    Article  CAS  Google Scholar 

  20. Rudenko, N. N., Ignatova, L. K., and Ivanov, B. N. (2007) Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane bound forms, Photosynth. Res., 91, 81–89.

    Article  CAS  PubMed  Google Scholar 

  21. Villarejo, A., Shutova, T., Moskvin, O., Forssen, M., Klimov, V. V., and Samuelsson, G. (2002) A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution, EMBO J., 21, 1930–1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shutova, T., Kenneweg, H., Buchta, J., Nikitina, J., Terentyev, V., Chernyshov, S., Andersson, B., Allakhverdiev, S. I., Klimov, V. V., Dau, H., Junge, W., and Samuelsson, G. (2008) The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal, EMBO J., 27, 782–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koroidov, S., Shevela, D., Shutova, T., Samuelsson, G., and Messinger, J. (2014) Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation, Proc. Natl. Acad. Sci. USA, 111, 6299–6304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stemler, A. (1977) The binding of bicarbonate to washed chloroplast grana, Biochim. Biophys. Acta, 460, 511–522.

    Article  CAS  PubMed  Google Scholar 

  25. Shmeleva, V. L., Ivanov, B. N., and Red’ko, T. P. (1982) Electron transport and photophosphorylation, coupled with photoreduction of oxygen by chloroplasts of peas, grown under different conditions of illumination, Biochemistry (Moscow), 47, 1104–1107.

    CAS  Google Scholar 

  26. Naydov, I. A., Mubarakshina, M. M., and Ivanov, B. N. (2012) Formation kinetics and H2O2 distribution in chloroplasts and protoplasts of photosynthetic leaf cells of higher plants under illumination, Biochemistry (Moscow), 77, 143–151.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Ivanov.

Additional information

Original Russian Text © E. M. Zhurikova, L. K. Ignatova, N. N. Rudenko, V. A. Mudrik, D. V. Vetoshkina, B. N. Ivanov, 2016, published in Biokhimiya, 2016, Vol. 81, No. 10, pp. 1463–1470.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-224, September 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhurikova, E.M., Ignatova, L.K., Rudenko, N.N. et al. Participation of two carbonic anhydrases of the alpha family in photosynthetic reactions in Arabidopsis thaliana . Biochemistry Moscow 81, 1182–1187 (2016). https://doi.org/10.1134/S0006297916100151

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100151

Key words

Navigation