Skip to main content
Log in

New fluorescent macrolide derivatives for studying interactions of antibiotics and their analogs with the ribosomal exit tunnel

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Novel fluorescent derivatives of macrolide antibiotics related to tylosin bearing rhodamine, fluorescein, Alexa Fluor 488, BODIPY FL, and nitrobenzoxadiazole (NBD) residues were synthesized. The formation of complexes of these compounds with 70S E. coli ribosomes was studied by measuring the fluorescence polarization depending on the ribosome amount at constant concentration of the fluorescent substance. With the synthesized fluorescent tylosin derivatives, the dissociation constants for ribosome complexes with several known antibiotics and macrolide analogs previously obtained were determined. It was found that the fluorescent tylosin derivatives containing BODIPY FL and NBD groups could be used to screen the binding of novel antibiotics to bacterial ribosomes in the macrolide-binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aoc:

(aminooxy)acetic acid

Boc:

tert-butyloxycarbonyl

BODIPY:

4,4-difluoro-5,7-dimethyl-4-bora-3a,4adiaza-s-indacene-3-pentanoic acid (BODIPY FL C5)

DCC:

1,3-dicyindacenclohexylcarbodiimide

Des:

desmycosin

DIPEA:

diisopropylethylamine

Ery:

erythromycin

LC-MS:

chromatomass-spectrometry

NBD:

7-nitro-2,1,3-benzoxadiazole-4-yl

OMT:

5-O-mycaminosyltylonolide

RT:

ribosomal tunnel

TFA:

trifluoroacetic acid

Tyl:

tylosin

References

  1. Kannan, K., and Mankin, A. S. (2011) Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action, Ann. N. Y. Acad. Sci., 1241, 33–47.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson, D. N. (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nat. Rev. Microbiol., 12, 35–48.

    Article  CAS  PubMed  Google Scholar 

  3. Bogdanov, A. A., Sumbatyan, N. V., Shishkina, A. V., Karpenko, V. V., and Korshunova, G. A. (2010) Ribosomal tunnel and translation regulation, Biochemistry (Moscow), 75, 1501–1516.

    Article  CAS  Google Scholar 

  4. Pestka, S. (1974) Binding of [14C]erythromycin to Escherichia coli ribosomes, Antimicrob. Agents Chemother., 6, 474–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Teraoka, H., and Nierhaus, K. H. (1979) Measurement of the binding of antibiotics to ribosomal particles by means of equilibrium dialysis, Methods Enzymol., 59, 862–866.

    Article  CAS  PubMed  Google Scholar 

  6. Abelian, A., Walsh, A. P., Lentzen, G., Aboul-Ela, F., and Gait, M. J. (2004) Targeting the A site RNA of the Escherichia coli ribosomal 30S subunit by 2'-O-methyl oligoribonucleotides: a quantitative equilibrium dialysis binding assay and differential effects of aminoglycoside antibiotics, Biochem. J., 383, 201–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandez-Munoz, R., Monro, R. E., Torres-Pinedo, R., and Vazquez, D. (1971) Substrateand antibiotic-binding sites at the peptidyl-transferase center of Escherichia coli ribosomes. Studies on the chloramphenicol, lincomycin and erythromycin sites, Eur. J. Biochem., 23, 185–193.

    Article  CAS  PubMed  Google Scholar 

  8. Siegrist, S., Lagouardat, J., Moreau, N., and LeGoffic, F. (1981) Mechanism of action of a 16-membered macrolide. Binding of rosaramicin to the Escherichia coli ribosome and its subunits, Eur. J. Biochem., 115, 323–327.

    Article  CAS  PubMed  Google Scholar 

  9. Llano-Sotelo, B., Dunkle, J., Klepacki, D., Zhang, W., Fernandes, P., Cate, J. H., and Mankin, A. S. (2010) Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis, Antimicrob. Agents Chemother., 54, 4961–4970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Starosta, A. L., Karpenko, V. V., Shishkina, A. V., Mikolajka, A., Sumbatyan, N. V., Schluenzen, F., Korshunova, G. A., Bogdanov, A. A., and Wilson, D. N. (2010) Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition, Chem. Biol., 17, 504–514.

    Article  CAS  PubMed  Google Scholar 

  11. Moazed, D., and Noller, H. F. (1987) Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA, Biochimie, 69, 879–884.

    Article  CAS  PubMed  Google Scholar 

  12. Xiong, L., Korkhin, Y., and Mankin, A. S. (2005) Binding site of the bridged macrolides in the Escherichia coli ribosome, Antimicrob. Agents Chemother., 49, 281–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petropoulos, A. D., Kouvela, E. C., Dinos, G. P., and Kalpaxis, D. L. (2008) Stepwise binding of tylosin and erythromycin to Escherichia coli ribosomes, characterized by kinetic and footprinting analysis, J. Biol. Chem., 283, 4756–4765.

    Article  CAS  PubMed  Google Scholar 

  14. Tejedor, F., and Ballesta, J. P. (1985) Ribosome structure: binding site of macrolides studied by photoaffinity labeling, Biochemistry, 24, 467–472.

    Article  CAS  PubMed  Google Scholar 

  15. Melançon, P., and Brakier-Gingras, L. (1985) Cross-linking of streptomycin to the 50S subunit of Escherichia coli with phenyldiglyoxal, Biochemistry, 24, 6089–6095.

    Article  PubMed  Google Scholar 

  16. Oehler, R., Polacek, N., Steiner, G., and Barta, A. (1997) Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA of Escherichia coli, Nucleic Acids Res., 25, 1219–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leach, K. L., Swaney, S. M., Colca, J. R., McDonald, W. G., Blinn, J. R., Thomasco, L. M., Gadwood, R. C., Shinabarger, D., Xiong, L., and Mankin, A. S. (2007) The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria, Mol. Cell., 26, 393–402.

    Article  CAS  PubMed  Google Scholar 

  18. McFarlan, S. C., and Vince, R. (1984) Inhibition of peptidyltransferase and possible mode of action of a dipeptidyl chloramphenicol analog, Biochem. Biophys. Res. Commun., 122, 748–754.

    Article  CAS  PubMed  Google Scholar 

  19. Xaplanteri, M. A., Andreou, A., Dinos, G. P., and Kalpaxis, D. L. (2003) Effect of polyamines on the inhibition of peptidyltransferase by antibiotics: revisiting the mechanism of chloramphenicol action, Nucleic Acids Res., 31, 5074–5083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dinos, G. P., Connell, S. R., Nierhaus, K. H., and Kalpaxis, D. L. (2003) Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation, Mol. Pharmacol., 63, 617–623.

    Article  CAS  PubMed  Google Scholar 

  21. Vince, R., Weiss, D., and Pestka, S. (1976) Binding of Nsubstituted erythromycylamines to ribosomes, Antimicrob. Agents Chemother., 9, 131–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langlois, R., Cantor, C. R., Vince, R., and Pestka, S. (1977) Interaction between the erythromycin and chloramphenicol binding sites on the Escherichia coli ribosome, Biochemistry, 16, 2349–2356.

    Article  CAS  PubMed  Google Scholar 

  23. Brandt-Rauf, P., Vince, R., LeMahieu, R., and Pestka, S. (1978) Fluorescent assay for estimating the binding of erythromycin derivatives to ribosomes, Antimicrob. Agents Chemother., 14, 88–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watkins, D., Norris, F. A., Kumar, S., and Arya, D. P. (2013) A fluorescence-based screen for ribosome binding antibiotics, Anal. Biochem., 434, 300–307.

    Article  CAS  PubMed  Google Scholar 

  25. Llano-Sotelo, B., Hickerson, R. P., Lancaster, L., Noller, H. F., and Mankin, A. S. (2009) Fluorescently labeled ribosomes as a tool for analyzing antibiotic binding, RNA, 15, 1597–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jameson, D. M., and Ross, J. A. (2010) Fluorescence polarization/anisotropy in diagnostics and imaging, Chem. Rev., 110, 2685–2708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turconi, S., Shea, K., Ashman, S., Fantom, K., Earnshaw, D. L., Bingham, R. P., Haupts, U. M., Brown, M. J. B., and Pope, A. J. (2001) Real experience of uHTS: a prototypic 1536-well fluorescence anisotropy-based uHTS screen and application of well-level quality control procedures, J. Biomol. Screen., 6, 275–290.

    Article  CAS  PubMed  Google Scholar 

  28. Yan, K., Hunt, E., Berge, J., May, E., Copeland, R. A., and Gontarek, R. R. (2005) Fluorescence polarization method to characterize macrolide-ribosome interactions, Antimicrob. Agents Chemother., 49, 3367–3372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, J., Kim, I. H., Roche, E. D., Beeman, D., Lynch, A. S., Ding, C. Z., and Ma, Z. (2006) Design, synthesis, and biological evaluation of BODIPY-erythromycin probes for bacterial ribosomes, Bioorg. Med. Chem. Lett., 16, 794–797.

    Article  PubMed  Google Scholar 

  30. Shishkina, A., Makarov, G., Tereshchenkov, A., Korshunova, G., Sumbatyan, N., Golovin, A., Svetlov, M., and Bogdanov, A. (2013) Conjugates of amino acids and peptides with 5-Omycaminosyltylonolide and their interaction with the ribosomal exit tunnel, Bioconjug. Chem., 24, 1861–1869.

    Article  CAS  PubMed  Google Scholar 

  31. Glassford, I., Lee, M., Wagh, B., Velvadapu, V., Paul, T., Sandelin, G., DeBrosse, C., Klepacki, D., Small, M. C., MacKerell, A. D., Jr., and Andrade, R. B. (2014) Desmethyl macrolides: synthesis and evaluation of 4-desmethyl telithromycin, ACS Med. Chem. Lett., 5, 1021–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tereshchenkov, A. G., Shishkina, A. V., Tashlitsky, V. N., Korshunova, G. A., Bogdanov, A. A., and Sumbatyan, N. V. (2016) Interaction of chloramphenicol tripeptide analogs with ribosomes, Biochemistry (Moscow), 81, 392–400.

    Article  CAS  Google Scholar 

  33. Sumbatyan, N. V., Kuznetsova, I. V., Karpenko, V. V., Fedorova, N. V., Chertkov, V. A., Korshunova, G. A., and Bogdanov, A. A. (2010) Amino acid and peptide derivatives of the tylosin family of macrolide antibiotics modified by aldehyde function, Russ. J. Bioorg. Chem., 36, 245–256.

    Article  CAS  Google Scholar 

  34. Noll, M., Hapke, B., and Noll, H. (1973) Structural dynamics of bacterial ribosomes, II. Preparation and characterization of ribosomes and subunits in the translation of natural messenger RNA, J. Mol. Biol., 80, 519–529.

    Article  CAS  PubMed  Google Scholar 

  35. Milon, P., Konevega, A. L., Peske, F., Fabbretti, A., Gualerzi, C. O., and Rodnina, M. V. (2007) Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria, Methods Enzymol., 43, 1–30.

    Article  Google Scholar 

  36. Yang, X. F., Guo, X. Q., and Zhao, Y. B. (2002) Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite, Talanta, 57, 883–890.

    CAS  PubMed  Google Scholar 

  37. Onoda, M., Uchiyama, S., Santa, T., and Imai, K. (2002) A photoinduced electron-transfer reagent for peroxyacetic acid, 4-ethylthioacetylamino-7-phenylsulfonyl-2,1,3-benzoxadiazole, based on the method for predicting the fluorescence quantum yields, Anal. Chem., 74, 4089–4096.

    CAS  PubMed  Google Scholar 

  38. Jablonski, A. (1960) On the notion of emission anisotropy, Bull. Acad. Pol. Sci., 8, 259–264.

    CAS  Google Scholar 

  39. Copeland, R. A. (2000) Enzymes: A Practical Introduction to Structure, Mechanism and Data Analysis, 2nd Edn., WileyVCH, New York, N. Y.

    Book  Google Scholar 

  40. Wang, Z. X. (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule, FEBS Lett., 360, 111–114.

    Article  CAS  PubMed  Google Scholar 

  41. Sumbatyan, N. V., Korshunova, G. A., and Bogdanov, A. A. (2003) Peptide derivatives of antibiotics tylosin and desmycosin, protein synthesis inhibitors, Biochemistry (Moscow), 68, 1156–1158.

    Article  CAS  Google Scholar 

  42. Goldman, R. C., Zakula, D., Flamm, R., Beyer, J., and Capobianco, J. (1994) Tight binding of clarithromycin, its 14-(R)-hydroxy metabolite, and erythromycin to Helicobacter pylori ribosomes, Antimicrob. Agents Chemother., 38, 1496–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Douthwaite, S., Hansen, L. H., and Mauvais, P. (2000) Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA, Mol. Microbiol., 36, 183–193.

    Article  CAS  PubMed  Google Scholar 

  44. Karahalios, P., Kalpaxis, D. L., Fu, H., Katz, L., Wilson, D. N., and Dinos, G. P. (2006) On the mechanism of action of 9-O-arylalkyloxime derivatives of 6-Omycaminosyltylonolide, a new class of 16-membered macrolide antibiotics, Mol. Pharmacol., 70, 1271–1280.

    Article  CAS  PubMed  Google Scholar 

  45. Mamos, P., Krokidis, M. G., Papadas, A., Karahalios, P., Starosta, A. L., Wilson, D. N., Kalpaxis, D. L., and Dinos, G. P. (2013) On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel, Biochimie, 95, 1765–1772.

    Article  CAS  PubMed  Google Scholar 

  46. Contreras, A., and Vazquez, D. (1977) Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes, Eur. J. Biochem., 74, 539–547.

    Article  CAS  PubMed  Google Scholar 

  47. Hansen, J., Ippolito, J., Ban, N., Nissen, P., Moore, P., and Steitz, T. (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit, Mol. Cell, 10, 117–128.

    Article  CAS  PubMed  Google Scholar 

  48. Schlunzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A., and Franceschi, F. (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase center in eubacteria, Nature, 413, 814–821.

    Article  CAS  PubMed  Google Scholar 

  49. Hansen, J. L., Moore, P. B., and Steitz, T. A. (2003) Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit, J. Mol. Biol., 330, 1061–1075.

    Article  CAS  PubMed  Google Scholar 

  50. Huang, X. (2003) Fluorescence polarization competition assay: the range of resolvable inhibitor potency is limited by the affinity of the fluorescent ligand, J. Biomol. Screen., 8, 34–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sumbatyan.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 10, pp. 1439–1450.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-186, September 12, 2016.

Electronic supplementary material

10541_2016_323_MOESM1_ESM.pdf

New Fluorescent Macrolide Derivatives for Studying Interactions of Antibiotics and Their Analogs with the Ribosomal Exit Tunnel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenkov, A.G., Shishkina, A.V., Karpenko, V.V. et al. New fluorescent macrolide derivatives for studying interactions of antibiotics and their analogs with the ribosomal exit tunnel. Biochemistry Moscow 81, 1163–1172 (2016). https://doi.org/10.1134/S0006297916100138

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100138

Key words

Navigation