Skip to main content
Log in

Detection of mutations in mitochondrial DNA by droplet digital PCR

  • Molecular Biology of Mitochondria (Special Issue) Guest Editor — P. A. Kamenski
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mutations in mitochondrial DNA (mtDNA) may result in various pathological processes. Detection of mutant mtDNAs is a problem for diagnostic practice that is complicated by heteroplasmy – a phenomenon of the inferring presence of at least two allelic variants of the mitochondrial genome. Also, the level of heteroplasmy largely determines the profile and severity of clinical manifestations. Here we discuss detection of mutations in heteroplasmic mtDNA using up-todate methods that have not yet been introduced as routine clinical assays. These methods can be used for detecting mutations in mtDNA to verify diagnosis of “mitochondrial disease”, studying dynamics of mutant mtDNA in body tissues of patients, as well as investigating structural features of mtDNAs. Original data on allele-specific discrimination of m.11778G>A mutation by droplet digital PCR are presented, which demonstrate an opportunity for simultaneous detection and quantitative assessment of mutations in mtDNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chinnery, P. F., Howell, N., Andrews, R. M., and Turnbull, D. M. (1999) Clinical mitochondrial genetics, J. Med. Genet., 36, 425–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome, Nature, 290, 457–465.

    Article  CAS  PubMed  Google Scholar 

  3. Chinnery, P. F., and Schon, E. A. (2003) Mitochondria, J. Neurol. Neurosurg. Psychiatry, 74, 1188–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wachsmuth, M., Hubner, A., Li, M., Madea, B., and Stoneking, M. (2016) Age-related and heteroplasmy-related variation in human mtDNA copy number, PLoS Genet., 12, e1005939.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gorman, G. S., Schaefer, A. M., Ng, Y., Gomez, N., Blakely, E. L., Alston, C. L., Feeney, C., Horvath, R., YuWai-Man, P., Chinnery, P. F., Taylor, R. W., Turnbull, D. M., and McFarland, R. (2015) Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease, Ann. Neurol., 77, 753–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pfeffer, G., and Chinnery, P. F. (2013) Diagnosis and treatment of mitochondrial myopathies, Ann. Med., 45, 4–16.

    Article  CAS  PubMed  Google Scholar 

  7. Pfeffer, G., Horvath, R., Klopstock, T., Mootha, V. K., Suomalainen, A., Koene, S., Hirano, M., Zeviani, M., Bindoff, L. A., Yu-Wai-Man, P., Hanna, M., Carelli, V., McFarland, R., Majamaa, K., Turnbull, D. M., Smeitink, J., and Chinnery, P. F. (2013) New treatments for mitochondrial disease-no time to drop our standards, Nat. Rev. Neurol., 9, 474–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hyslop, L. A., Blakeley, P., Craven, L., Richardson, J., Fogarty, N. M., Fragouli, E., Lamb, M., Wamaitha, S. E., Prathalingam, N., Zhang, Q., O’Keefe, H., Takeda, Y., Arizzi, L., Alfarawati, S., Tuppen, H. A., Irving, L., Kalleas, D., Choudhary, M., Wells, D., Murdoch, P., Turnbull, D. M., Niakan, K. K., and Herbert, M. (2016) Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease, Nature, doi: 10.1038/nature18303.

    Google Scholar 

  9. Bredenoord, A. L., Dondorp, W., Pennings, G., and De Wert, G. (2010) Avoiding transgenerational risks of mitochondrial DNA disorders: a morally acceptable reason for sex selection? Hum. Reprod., 25, 1354–1360.

    Article  PubMed  Google Scholar 

  10. Ylikallio, E., and Suomalainen, A. (2012) Mechanisms of mitochondrial diseases, Ann. Med., 44, 41–59.

    Article  CAS  PubMed  Google Scholar 

  11. Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S., and Moraes, C. T. (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs, Nat. Med., 19, 1111–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gammage, P. A., Rorbach, J., Vincent, A. I., Rebar, E. J., and Minczuk, M. (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations, EMBO Mol. Med., 6, 458–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jo, A., Ham, S., Lee, G. H., Lee, Y. I., Kim, S., Lee, Y. S., Shin, J. H., and Lee, Y. (2015) Efficient mitochondrial genome editing by CRISPR/Cas9, Biomed Res. Int., doi: 10.1155/2015/305716.

    Google Scholar 

  14. Orishchenko, K. E., Sofronova, Yu. K., Chupakhin, E. G., Lunev, E. A., and Mazunin, I. O. (2016) Delivery of Cas9 into mitochondria, Genes Cells, 11, in press.

    Google Scholar 

  15. Chinnery, P. F. (2016) Mitochondrial disease in adults: what’s old and what’s new? EMBO Mol. Med., 12, 1503–1512.

    Google Scholar 

  16. Koopman, W. J., Beyrath, J., Fung, C. W., Koene, S., Rodenburg, R. J., Willems, P. H., and Smeitink, J. A. (2016) Mitochondrial disorders in children: toward development of small-molecule treatment strategies, EMBO Mol. Med., 8, 311–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suomalainen, A., Elo, J. M., Pietilainen, K. H., Hakonen, A. H., Sevastianova, K., Korpela, M., Isohanni, P., Marjavaara, S. K., Tyni, T., Kiuru-Enari, S., Pihko, H., Darin, N., Ounap, K., Kluijtmans, L. A., Paetau, A., Buzkova, J., Bindoff, L. A., Annunen-Rasila, J., Uusimaa, J., Rissanen, A., Yki-Jarvinen, H., Hirano, M., Tulinius, M., Smeitink, J., and Tyynismaa, H. (2011) FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study, Lancet Neurol., 9, 806–818.

    Article  Google Scholar 

  18. Ji, K., Zheng, J., Lv, J., Xu, J., Ji, X., Luo, Y. B., Li, W., Zhao, Y., and Yan, C. (2015) Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1α pathway, Free Radic. Biol. Med., 84, 161–170.

    Article  CAS  PubMed  Google Scholar 

  19. Wong, L. J., Scaglia, F., Graham, B. H., and Craigen, W. J. (2010) Current molecular diagnostic algorithm for mitochondrial disorders, Mol. Genet. Metab., 100, 111–117.

    Article  CAS  PubMed  Google Scholar 

  20. Ma, Y., Fang, F., Yang, Y., Zou, L., Zhang, Y., Wang, S., Xu, Y., Pei, P., and Qi, Y. (2009) The study of mitochondrial A3243G mutation in different samples, Mitochondrion, 9, 139–143.

    Article  CAS  PubMed  Google Scholar 

  21. Kozlowski, P., Jasinska, A. J., and Kwiatkowski, D. J. (2008) New applications and developments in the use of multiplex ligation-dependent probe amplification, Electrophoresis, 23, 4627–4636.

    Article  Google Scholar 

  22. Mayorga, L., Laurito, S. R., Loos, M. A., Eiroa, H. D., De Pinho, S., Lubieniecki, F., Arroyo, H. A., Pereyra, M. F., Kauffman, M. A., and Roque, M. (2016) Mitochondrial DNA deletions detected by multiplex ligation-dependent probe amplification, Mitochondrial DNA A DNA MappSeq. Anal., 27, 2864–2867

    PubMed  Google Scholar 

  23. Vasta, V., Ng, S. B., Turner, E. H., Shendure, J., and Hahn, S. H. (2009) Next generation sequence analysis for mitochondrial disorders, Genome Med., 23, 100.

    Article  Google Scholar 

  24. Palculict, M. E., Zhang, V. W., Wong, L. J., and Wang, J. (2016) Comprehensive mitochondrial genome analysis by massively parallel sequencing, Methods Mol. Biol., 1351, 3–17.

    Article  PubMed  Google Scholar 

  25. Moraes, C. T., Atencio, D. P., Oca-Cossio, J., and Diaz, F. (2003) Techniques and pitfalls in the detection of pathogenic mitochondrial DNA mutations, J. Mol. Diagn., 5, 197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurelac, I., Lang, M., Zuntini, R., Calabrese, C., Simone, D., Vicario, S., Santamaria, M., Attimonelli, M., Romeo, G., and Gasparre, G. (2012) Searching for a needle in the haystack: comparing six methods to evaluate heteroplasmy in difficult sequence context, Biotechnol. Adv., 30, 363–371.

    Article  CAS  PubMed  Google Scholar 

  27. Sobenin, I. A., Mitrofanov, K. Y., Zhelankin, A. V., Sazonova, M. A., Postnov, A. Y., Revin, V. V., Bobryshev, Y. V., and Orekhov, A. N. (2014) Quantitative assessment of heteroplasmy of mitochondrial genome: perspectives in diagnostics and methodological pitfalls, Biomed Res. Int., 292017.

    Google Scholar 

  28. Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., Bright, I. J., Lucero, M. Y., Hiddessen, A. L., Legler, T. C., Kitano, T. K., Hodel, M. R., Petersen, J. F., Wyatt, P. W., Steenblock, E. R., Shah, P. H., Bousse, L. J., Troup, C. B., Mellen, J. C., Wittmann, D. K., Erndt, N. G., Cauley, T. H., Koehler, R. T., So, A. P., Dube, S., Rose, K. A., Montesclaros, L., Wang, S., Stumbo, D. P., Hodges, S. P., Romine, S., Milanovich, F. P., White, H. E., Regan, J. F., KarlinNeumann, G. A., Hindson, C. M., Saxonov, S., and Colston, B. W. (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number, Anal. Chem., 83, 8604–8610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Podlesniy, P., Figueiro-Silva, J., Llado, A., Antonell, A., Sanchez-Valle, R., Alcolea, D., Lleo, A., Molinuevo, J. L., Serra, N., and Trullas, R. (2013) Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer’s disease, Ann. Neurol., 74, 655–668.

    Article  CAS  PubMed  Google Scholar 

  30. Wachsmuth, M., Hubner, A., Li, M., Madea, B., and Stoneking, M. (2016) Age-related and heteroplasmy-related variation in human mtDNA copy number, PLoS Genet., 12, e1005939.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taylor, S. D., Ericson, N. G., Burton, J. N., Prolla, T. A., Silber, J. R., Shendure, J., and Bielas, J. H. (2014) Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain, Aging Cell, 13, 29–38.

    Article  CAS  PubMed  Google Scholar 

  32. Rebolledo-Jaramillo, B., Su, M. S., Stoler, N., McElhoe, J. A., Dickins, B., Blankenberg, D., Korneliussen, T. S., Chiaromonte, F., Nielsen, R., Holland, M. M., Paul, I. M., Nekrutenko, A., and Makova, K. D. (2014) Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA, Proc. Natl. Acad. Sci. USA, 111, 15474–15479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Mazunin.

Additional information

Original Russian Text © J. K. Sofronova, Y. Y. Ilinsky, K. E. Orishchenko, E. G. Chupakhin, E. A. Lunev, I. O. Mazunin, 2016, published in Biokhimiya, 2016, Vol. 81, No. 10, pp. 1293–1298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofronova, J.K., Ilinsky, Y.Y., Orishchenko, K.E. et al. Detection of mutations in mitochondrial DNA by droplet digital PCR. Biochemistry Moscow 81, 1031–1037 (2016). https://doi.org/10.1134/S0006297916100011

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916100011

Key words

Navigation