Skip to main content
Log in

Role of ceramide in apoptosis and development of insulin resistance

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review presents data on the functional biochemistry of ceramide, one of the key sphingolipids with properties of a secondary messenger. Molecular mechanisms of the involvement of ceramide in apoptosis in pancreatic β-cells and its role in the formation of insulin resistance in pathogenesis of type 2 diabetes are reviewed. One of the main predispositions for the development of insulin resistance and diabetes is obesity, which is associated with ectopic fat deposition and significant increase in intracellular concentrations of cytotoxic ceramides. A possible approach to the restoration of tissue sensitivity to insulin in type 2 diabetes based on selective reduction of the content of cytotoxic ceramides is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Apaf-1:

apoptotic protease activating factor 1

Bcl-2:

B-cell lymphoma 2 protein

CAPK:

ceramide-activated protein kinase

CAPP:

ceramide-activated protein phosphatase

c-Jun:

c-Jun transcription factor

CRD:

cysteine-rich domain

DAG:

1,2-diacylglycerol

ER:

endoplasmic reticulum

ERK-1/2:

extracellular signal-regulated kinase 1/2

FA:

fatty acid

FADD:

Fas/Apo-1-associated with death domain

FAN:

factor associated with neutral sphingomyelinase activation

Fas-L:

Fas-ligand

FOXO1:

forkhead box protein O1

GLUT4:

glucose transporter 4

GSH:

reduced glutathione

GSK3:

glycogen synthase kinase 3

IFN-γ:

interferon-γ

IL-1:

interleukin-1

iNOS:

inducible nitric oxide synthase

IRS-1:

insulin receptor substrate 1

JNK:

c-Jun N-terminal kinase

KSR:

kinase suppressor of Ras

MAPK:

mitogen-activated protein kinase

MLK3:

mixed lineage kinase 3

mRNA:

messenger RNA

NF-κB:

nuclear factor kappa B

NO:

nitric oxide

PDK1:

3-phosphoinositide-dependent protein kinase 1

PDX-1:

pancreatic and duodenal homeobox gene 1

PH-domain:

pleckstrin homology domain

PI3K:

phosphatidylinositol 3kinase

PKB/Akt:

protein kinase B

PKC:

protein kinase C

PP1:

protein phosphatase 1

PP2A:

protein phosphatase 2A

PtdIns(4,5)P2 :

phosphatidylinositol (4,5)-bisphosphate

PtdIns(3,4,5)P3 :

phosphatidylinositol (3,4,5)-trisphosphate

Rb:

retinoblastoma protein

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

SAPK:

stress-activated protein kinase

SM:

sphingomyelin

SMase:

sphingomyelinase

S1P:

sphingosin-1-phosphate

TNF-α:

tumor necrosis factor-α

TNFR:

tumor necrosis factor receptor

TRADD:

TNF receptor-associated death domain protein

UPR:

unfolded protein response

References

  1. Merrill, A. H., Schmelz, E. M., Wang, E., Dillehay, D. L., Rice, L. G., Meredith, F., and Riley, R. T. (1997) Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets, J. Nutr., 127, 830S-833S.

    Google Scholar 

  2. Huwiler, A., Kolter, T., Pfeilschifter, J., and Sandhoff, K. (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling, Biochim. Biophys. Acta, 1485, 63–99.

    Article  CAS  PubMed  Google Scholar 

  3. Colombaionia, L., and Garcia-Gilb, M. (2004) Sphingolipid metabolites in neural signaling and function, Brain Res. Rev., 46, 328–355.

    Article  CAS  Google Scholar 

  4. Hannun, Y. A., Loomis, C. R., Merrill, A. H., and Bell, R. M. (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets, J. Biol. Chem., 261, 12604–12609.

    CAS  PubMed  Google Scholar 

  5. Hannun, Y. A. (1994) The sphingomyelin cycle and the second messenger function of ceramide, J. Biol. Chem., 269, 3125–3128.

    CAS  PubMed  Google Scholar 

  6. Okazaki, T., Bell, R. M., and Hannun, Y. A. (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation, J. Biol. Chem., 264, 19076–19080.

    CAS  PubMed  Google Scholar 

  7. Ohanian, J., and Ohanian, V. (2001) Sphingolipids in mammalian cell signaling, Cell. Mol. Life Sci., 58, 20532068.

    Article  Google Scholar 

  8. Hannun, Y. A., and Bell, R. M. (1989) Regulation of protein kinase C by sphingosine and lysosphingolipids, Clin. Chim. Acta, 185, 333–345.

    Article  CAS  PubMed  Google Scholar 

  9. Marchesini, N., and Hannun, Y. A. (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation, Biochem. Cell Biol., 82, 27–44.

    Article  CAS  PubMed  Google Scholar 

  10. Gault, C. R., Obeid, L. M., and Hannun, Y. A. (2010) An overview of sphingolipid metabolism: from synthesis to breakdown, Adv. Exp. Med. Biol., 688, 1–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pettus, B. J., Chalfant, Ch. E., and Hannun, Y. A. (2002) Ceramide in apoptosis: an overview and current perspectives, Biochim. Biophys. Acta, 1585, 114–125.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, B. X., Rajagopalan, V., Roddy, P. L., Clarke, C. J., and Hannun, Y. A. (2010) Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5, J. Biol. Chem., 285, 17993–18002.

    CAS  Google Scholar 

  13. Gatt, S., Barenholz, Y., and Roitman, A. (1966) Isolation of rat brain lecithinase-A, specific for the alpha’-position of lecithin, Biochem. Biophys. Res. Commun., 24, 69–72.

    Google Scholar 

  14. Sawada, M., Nakashima, S., Kiyono, T., Yamada, J., Hara, S., Nakagawa, M., Shinoda, J., and Sakai, N. (2002) Acid sphingomyelinase activation requires caspase8 but not p53 nor reactive oxygen species during Fasinduced apoptosis in human glioma cells, Exp. Cell Res., 273, 157–168.

    Article  CAS  PubMed  Google Scholar 

  15. Rotolo, J., Zhang, J., Donepudi, M., Lee, H., Fuks, Z., and Kolesnick, R. (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling, J. Biol. Chem., 280, 26425–26434.

    Article  CAS  PubMed  Google Scholar 

  16. Zeidan, Y. H., and Hannun, Y. A. (2007) Activation of acid sphingomyelinase by protein kinase Cdelta-mediated phosphorylation, J. Biol. Chem., 282, 11549–11561.

    Article  CAS  PubMed  Google Scholar 

  17. Hannun, Y. A., and Obeid, L. M. (2008) Principles of bioactive lipid signaling: lessons from sphingolipids, Nature, 9, 139–150.

    CAS  Google Scholar 

  18. Castillo, S. S., Levy, M., Thaikoottathil, J. V., and Goldkorn, T. (2007) Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells, Exp. Cell Res., 313, 2680–2686.

    Article  CAS  PubMed  Google Scholar 

  19. Parent, N., Scherer, M., Liebisch, G., Schmitz, G., and Bertrand, R. (2011) Protein kinase C-delta isoform mediates lysosome labilization in DNA damage-induced apoptosis, Int. J. Oncol., 38, 313–324.

    CAS  PubMed  Google Scholar 

  20. Santana, P., Pena, L. A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E. H., Fuks, Z., and Kolesnick, R. (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis, Cell, 86, 189–199.

    Article  CAS  PubMed  Google Scholar 

  21. Paris, F., Grassme, H., Cremesti, A., Zager, J., Fong, Y., Haimovitz-Friedman, A., Fuks, Z., Gulbins, E., and Kolesnick, R. (2001) Natural ceramide reverses Fas resistance of acid sphingomyelinase(–/–) hepatocytes, J. Biol. Chem., 276, 8297–8305.

    Article  CAS  PubMed  Google Scholar 

  22. Gulbins, E., and Grassme, H. (2002) Ceramide and cell death receptor clustering, Biochim. Biophys. Acta, 1585, 139–145.

    Article  CAS  PubMed  Google Scholar 

  23. Tsukamoto, S., Hirotsu, K., Kumazoe, M., Goto, Y., Sugihara, K., Suda, T., Tsurudome, Y., Suzuki, T., Yamashita, S., Kim, Y., Huang, Y., Yamada, K., and Tachibana, H. (2012) Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase C delta and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells, Biochem. J., 443, 525–534.

    Article  CAS  PubMed  Google Scholar 

  24. Tirodkar, T. S., and Voelkel-Johnson, C. (2012) Sphingolipids in apoptosis, Exp. Oncol., 34, 231–242.

    CAS  PubMed  Google Scholar 

  25. Schneider, P. B., and Kennedy, E. P. (1967) Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann–Pick disease, J. Lipid Res., 8, 202–209.

    CAS  PubMed  Google Scholar 

  26. Tani, M., and Hannun, Y. A. (2007) Analysis of membrane topology of neutral sphingomyelinase 2, FEBS Lett., 581, 1323–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, B. X., Clarke, C. J., and Hannun, Y. A. (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses, Neuromol. Med., 12, 320–330.

    Article  CAS  Google Scholar 

  28. Hofmann, K., Tomiuk, S., Wolff, G., and Stoffel, W. (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase, Proc. Natl. Acad. Sci. USA, 97, 5895–5900.

    Article  CAS  PubMed  Google Scholar 

  29. Marchesini, N., Luberto, C., and Hannun, Y. A. (2003) Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism, J. Biol. Chem., 278, 13775–13783.

    Article  CAS  PubMed  Google Scholar 

  30. Marchesini, N., Osta, W., Bielawski, J., Luberto, C., Obeid, L. M., and Hannun, Y. A. (2004) Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells, J. Biol. Chem., 279, 25101–25111.

    Article  CAS  PubMed  Google Scholar 

  31. Karakashian, A. A., Giltiay, N. V., Smith, G. M., and Nikolova-Karakashian, M. N. (2004) Expreßsion of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-ß-induced JNK activation, FASEB J., 18, 968–970.

    CAS  PubMed  Google Scholar 

  32. Clarke, C. J., Truong, T. G., and Hannun, Y. A. (2007) Role for neutral sphingomyelinase-2 in tumor necrosis factor a-stimulated expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2, J. Biol. Chem., 282, 1384–1396.

    Article  CAS  PubMed  Google Scholar 

  33. Adam, D., Wiegmann, K., Adam-Klages, S., Ruff, A., and Kronke, M. (1996) A novel cytoplasmic domain of the p55 tumor necrosis factor receptor initiates the neutral sphingomyelinase pathway, J. Biol. Chem., 271, 14617–14622

    Article  CAS  PubMed  Google Scholar 

  34. Adam-Klages, S., Schwandner, R., Adam, D., Kreder, D., Bernardo, K., and Kronke, M. (1998) Distinct adapter proteins mediate acid versus neutral sphingomyelinase activation through the p55 receptor for tumor necrosis factor, J. Leukoc. Biol., 63, 678–682.

  35. Linardic, L. A., and Hannun, Y. A. (1994) Identification of a distinct pool of sphingomyelin involved in the sphingomyelin cycle, J. Biol. Chem., 269, 23530–23537.

    CAS  PubMed  Google Scholar 

  36. Tepper, A. D., Ruurs, P., Wiedmer, T., Sims, P. J., Borst. J., and Van Blitterswijk, W. J. (2000) Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology, J. Cell. Biol., 150, 155–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koval, M., and Pagano, R. E. (1991) Intracellular transport and metabolism of sphingomyelin, Biochim. Biophys. Acta, 1082, 113–125.

    Article  CAS  PubMed  Google Scholar 

  38. Grassme, H., Schwarz, H., and Gulbins, E. (2001) Molecular mechanisms of ceramide-mediated CD95 clustering, Biochem. Biophys. Res. Commun., 284, 1016–1030.

    Article  CAS  PubMed  Google Scholar 

  39. Van Blitterswijk, W., Van der Luit, A., Veldman, R. J., Verheij, M., and Borst, J. (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J., 369, 199–211.

  40. Vance, J. E. (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria, J. Biol. Chem., 265, 7248–7256.

    CAS  PubMed  Google Scholar 

  41. Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A., Calvo, M., Enrich, C., and Fernandez-Checa, J. C. (2003) Defective TNF-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice, J. Clin. Invest., 111, 197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bionda, C., Portoukalian, J., Schmitt, D., RodriguezLafrasse, C., and Ardail, D. (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem. J., 382, 527–533.

  43. Ruiz-Arguello, M. B., Basanez, G., Goni, F. M., and Alonso, A. (1996) Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage, J. Biol. Chem., 271, 26616–26621.

    Article  CAS  PubMed  Google Scholar 

  44. Hannun, Y. A., and Luberto, C. (2000) Ceramide in the eukaryotic stress response, Trends Cell Biol., 10, 73–80.

    Article  CAS  PubMed  Google Scholar 

  45. Ruvolo, P. P. (2003) Intracellular signal transduction pathways activated by ceramide and its metabolites, Pharmacol. Res., 47, 383–392.

    Article  CAS  PubMed  Google Scholar 

  46. Kronke, M. (1999) Biophysics of ceramide signaling: interaction with proteins and phase transition of membranes, Chem. Phys. Lipids, 101, 109–121.

    Article  CAS  PubMed  Google Scholar 

  47. Kolesnick, R., and Fuks, Z. (1995) Ceramide: a signal for apoptosis or mitogenesis? J. Exp. Med., 181, 1949–1952.

  48. Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., Birrer, M. J., Szabo, E., Zon, L. I., Kyriakis, J. M., Haimovitz-Friedman, A., Fuks, Z., and Kolesnick, R. N. (1996) Requirement for ceramide-initiated SAPK/JNK signaling in stress-induced apoptosis, Nature, 380, 75–79.

    Article  CAS  PubMed  Google Scholar 

  49. Michael, J. M., Lavin, M. F., and Watters, D. J. (1997) Resistance to radiation-induced apoptosis in Burkitt’s lymphoma cells is associated with defective ceramide signaling, Cancer Res., 57, 3600–3605.

    CAS  PubMed  Google Scholar 

  50. Whitman, S., Civoli, F., and Daniel, L. (1997) Protein kinase C beta II activation by 1-beta-D-arabinofuranosylcytosine is antagonistic to stimulation of apoptosis and Bcl2alpha down-regulation, J. Biol. Chem., 272, 23481–23484.

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki, A., Iwasaki, M., Kato, M., and Wagai, N. (1997) Sequential operation of ceramide synthesis and ICE cascade in CPT-11-initiated apoptotic death signaling, Exp. Cell Res., 233, 41–47.

    Article  CAS  PubMed  Google Scholar 

  52. Uchida, Y., Nardo, A. D., Collins, V., Elias, P. M., and Holleran, W. M. (2003) De novo ceramide synthesis participates in the ultraviolet B irradiation-induced apoptosis in undifferentiated cultured human keratinocytes, J. Invest. Dermatol., 120, 662–669.

    Article  CAS  PubMed  Google Scholar 

  53. Kroesen, B. J., Jacobs, S., Pettus, B. J., Sietsma, H., Kok, J. W., Hannun, Y. A., and De Leij, L. F. (2003) BcR-induced apoptosis involves differential regulation of C16and C24ceramide formation and sphingolipid-dependent activation of the proteasome, J. Biol. Chem., 278, 14723–14731.

    Article  CAS  PubMed  Google Scholar 

  54. Mathias, S., Dressler, K. A., and Kolesnick, R. N. (1991) Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha, Proc. Natl. Acad. Sci. USA, 88, 10009–10013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Y., Yao, B., Delikat, S. S., Bayoumy, S., Lin, X. H., Basu, S., McGinley, M., Chan-Hui, P. Y., Lichenstein, H., and Kolesnick, R. (1997) Kinase suppressor of Ras is ceramide-activated protein kinase, Cell, 89, 63–72.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, J., Mathias, S., Yang, Z., and Kolesnick, R. N. (1994) Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramide-activated protein kinase, J. Biol. Chem., 269, 3047–3052.

    CAS  PubMed  Google Scholar 

  57. Dhillon, A. S., and Kolch, W. (2002) Untying the regulation of the Raf-1 kinase, Arch. Biochem. Biophys., 404, 3–9.

    Article  CAS  PubMed  Google Scholar 

  58. Xing, H. R., and Kolesnick, R. (2001) Kinase suppressor of Ras signals through Thr-269 of c-Raf-1, J. Biol. Chem., 276, 9733–9741.

    Article  CAS  PubMed  Google Scholar 

  59. Basu, S., and Kolesnick, R. (1998) Stress signals for apoptosis: ceramide and c-jun kinase, Oncogene, 17, 3277–3285.

    Article  PubMed  Google Scholar 

  60. Mathias, Sh., Penna, L. A., and Kolesnick, R. N. (1998) Signal transduction of stress via ceramide, Biochem. J., 335, 465–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kishikawa, K., Chalfant, C. E., Perry, D. K., Bielawska, A., and Hannun, Y. A. (1999) Phosphatidic acid is a potent and selective inhibitor of protein phosphatase 1 and an inhibitor of ceramide-mediated responses, J. Biol. Chem., 274, 21335–21341.

    Article  CAS  PubMed  Google Scholar 

  62. Dobrowsky, R. T., and Hannun, Y. A. (1993) Ceramide-activated protein phosphatase: partial purification and relationship to protein phosphatase 2A, Adv. Lipid Res., 25, 91–104.

    CAS  PubMed  Google Scholar 

  63. Mumby, M. C., and Walter, G. (1993) Protein serine/threonine phosphatases: structure regulation and function in cell growth, Physiol. Rev., 73, 673–699.

    CAS  PubMed  Google Scholar 

  64. Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K., and May, W. S. (1999) Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A, J. Biol. Chem., 274, 20296–20300.

    Article  CAS  PubMed  Google Scholar 

  65. Ruvolo, P. P., Clark W., Mumby, M., Gao, F., and May, W. S. (2002) A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function, J. Biol. Chem., 277, 22847–22852.

    Article  CAS  PubMed  Google Scholar 

  66. Reyes, J. G., Robayna, I. G., Delgado, P. S., Gonzalez, I. H., Aguiar, J. Q., Rosas, F. E., Fanjul, L. F., and Galarreta, C. M. (1996) C-jun is a downstream target for ceramideactivated protein phosphatase in a431 cells, J. Biol. Chem., 271, 21375–21380.

    Article  CAS  PubMed  Google Scholar 

  67. Nikolova-Karakashian, M., Russell, R., Booth, R., Jenden, D., and Merrill, A. J. (1997) Sphingomyelin metabolism in rat liver after chronic dietary replacement of choline by N-aminodeanol, J. Lipid Res., 38, 1764–1770.

    CAS  PubMed  Google Scholar 

  68. Chiang, C.-W., Harris, G., Ellig, C., Masters, S. C., Subramanian, R., Shenolikar, S., Wadzinski, B. E., and Yang, E. (2001) Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation, Blood, 97, 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  69. Schubert, K. M., Scheid, M. P., and Duronio, V. (2000) Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473, J. Biol. Chem., 275, 13330–13335.

    Article  CAS  PubMed  Google Scholar 

  70. Salinas, M., Lopez-Valdaliso, R., Martin, D., Alvarez, A., and Cuadrado, A. (2000) Inhibition of PKB/Akt1 by C2ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells, Mol. Cell. Neurosci., 15, 156–169.

    Article  CAS  PubMed  Google Scholar 

  71. Basu, S., Bayoumy, S., Zhang, Y., Lozano, J., and Kolesnick, R. (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1, J. Biol. Chem., 273, 3041930426.

    Article  Google Scholar 

  72. Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S., and Reed, J. C. (1998) Regulation of cell death protease caspase-9 by phosphorylation, Science, 282, 1318–1321.

    Article  CAS  PubMed  Google Scholar 

  73. Dbaibo, G. S., Pushkareva, M. Y., Jayadev, S., Schwarz, J. K., Horowitz, J. M., Obeid, L. M., and Hannun, Y. A. (1995) Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest, Proc. Natl. Acad. Sci. USA, 92, 1347–1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hurley, J. H., Newton, A. C., Parker, P. J., Blumberg, P. M., and Nishizuka, Y. (1997) Taxonomy and function of C1 protein kinase C homology domains, Protein Sci., 6, 477–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bourbon, N. A., Yun, J., and Kester, M. (2000) Ceramide directly activates protein kinase C to regulate a stress-activated protein kinase signaling complex, J. Biol. Chem., 275, 35617–35623.

    Article  CAS  PubMed  Google Scholar 

  76. Doornbos, R. P., Theelen, M., Van der Hoeven, P. C., Van Blitterswijk, W. J., Verkleij, A. J., and Van Bergen en Henegouwen, P. M. (1999) Protein kinase C zeta is a negative regulator of protein kinase B activity, J. Biol. Chem., 274, 8589–8596.

    Article  CAS  PubMed  Google Scholar 

  77. Brenner, B., Koppenhoefer, U., Weinstock, C., Linderkamp, O., Lang, F., and Gulbins, E. (1997) Fasor ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153, J. Biol. Chem., 272, 22173–22181.

    Article  CAS  PubMed  Google Scholar 

  78. Haldar, S., Basu, A., and Croce, C. M. (1998) Serine-70 is one of the critical sites for drug-induced Bcl 2 phosphorylation in cancer cells, Cancer Res., 58, 1609–1615.

    CAS  PubMed  Google Scholar 

  79. Yamamoto, K., Ihijo, H., and Korsmeyer, S. (1999) Bcl2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M, Mol. Cell. Biol., 19, 8469–8478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mechta-Grigoriou, F., Gerald, D., and Yaniv, M. (2001) The mammalian Jun proteins: redundancy and specificity, Oncogene, 20, 2378–2389.

    Article  CAS  PubMed  Google Scholar 

  81. Foghsgaard, L., Lademann, U., Wissing, D., Poulsen, B., and Jaattela, M. (2002) Cathepsin B mediates tumor necrosis factor-induced arachidonic acid release in tumor cells, J. Biol. Chem., 277, 39499–39506.

    Article  CAS  PubMed  Google Scholar 

  82. Wu, G. S., Saftig, P., Peters C., and El-Deiry, W. S. (1998) Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity, Oncogene, 16, 2177–2183.

    Article  CAS  PubMed  Google Scholar 

  83. Heinrich, M., Neumeyer, J., Jakob, M., Hallas, C., Tchikov, V., Winoto-Morbach, S., Wickel, M., SchneiderBrachert, W., Trauzold, A., Hethke, A., and Schutze, S. (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation, Cell Death Differ., 11, 550–563.

    Article  CAS  PubMed  Google Scholar 

  84. Heinrich, M., Wickel, M., Winoto-Morbach, S., Schneider-Brachert, W., Weber, T., Brunner, J., Saftig, P., Peters, C., Kronke, M., and Schutze, S. (2000) Ceramide as an activator lipid of cathepsin D, Adv. Exp. Med. Biol., 477, 305–331.

    Article  CAS  PubMed  Google Scholar 

  85. Dumitru, C. A., Sandalcioglu, I. E., Wagner, M., Weller, M., and Gulbins, E. (2009) Lysosomal ceramide mediates gemcitabine-induced death of glioma cells, J. Mol. Med. (Berlin), 87, 1123–1132.

    Article  CAS  Google Scholar 

  86. Liu, B., and Hannun, Y. A. (1997) Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione, J. Biol. Chem., 272, 16281–16287.

    Article  CAS  PubMed  Google Scholar 

  87. Gulbins, E., and Li, P. L. (2006) Physiological and pathophysiological aspects of ceramide, Am. J. Physiol. Regul. Integr. Comp. Physiol., 290, R11–R26.

    Article  CAS  PubMed  Google Scholar 

  88. Taha, T. A., Mullen, T. D., and Obeid, L. M. (2006) A house divided: ceramide, sphingosine, and sphingosine-1phosphate in programmed cell death, Biochim. Biophys. Acta, 1758, 2027–2036.

    CAS  Google Scholar 

  89. Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J. C., Liu, Y., Peng, Q., Ramaraju, H., Sullards, M. C., Cabot, M., and Merrill, A. H., Jr. (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy, Biochim. Biophys. Acta, 1758, 1864–1884.

    CAS  PubMed  Google Scholar 

  90. Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 26, 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kiechle, F. L., and Zhang, X. (2002) Apoptosis: biochemical aspects and clinical implications, Clin. Chim. Acta, 326, 27–45.

    Article  CAS  PubMed  Google Scholar 

  92. Riedl, S. J., and Shi, Y. (2004) Molecular mechanisms of caspase regulation during apoptosis, Nat. Rev. Mol. Cell Biol., 5, 897–907.

    Article  CAS  PubMed  Google Scholar 

  93. Szegezdi, E., Fitzgerald, U., and Samali, A. (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far, Ann. N. Y. Acad. Sci., 1010, 186–194.

    Article  CAS  PubMed  Google Scholar 

  94. Wiegmann, K., Schutze, S., Machleidt, T., Witte, D., and Kronke, M. (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling, Cell, 78, 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  95. Dbaibo, G. S., Perry, D. K., Gamard, C. J., Platt, R., Poirier, G. G., Obeid, L. M., and Hannun, Y. A. (1997) Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway, J. Exp. Med., 185, 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schwandner, R., Wiegmann, K., Bernardo, K., Kreder, D., and Kronke, M. (1998) TNF receptor death domainassociated proteins TRADD and FADD signal activation of acid sphingomyelinase, J. Biol. Chem., 273, 5916–5922.

    Article  CAS  PubMed  Google Scholar 

  97. De Maria, R., Rippo, M., Schuchman, E., and Testi, R. (1998) Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells, J. Exp. Med., 187, 897–902.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Salvesen, G., and Dixit, V. (1997) Caspases: intracellular signaling by proteolysis, Cell, 91, 443–446.

    Article  CAS  PubMed  Google Scholar 

  99. Cifone, M. G., Roncaioli, P., De Maria, R., Camarda, G., Santoni, A., Ruberti, G., and Testi, R. (1995) Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal, EMBO J., 14, 5859–5868.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chinnaiyan, A. M., Tepper, C. G., Seldin, M. F., O’Rourke, K., Kischkel, F. C., Hellbardt, S., Krammer, P. H., Peter, M. E., and Dixit, V. M. (1996) FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis, J. Biol. Chem., 271, 4961–4965.

    Article  CAS  PubMed  Google Scholar 

  101. Keane, R. W., Srinivasan, A., Foster, L. M., Testa, M. P., Ord, T., Nonner, D., Wang, H. G., Reed, J. C., Bredesen, D. E., and Kayalar, C. (1997) Activation of CPP32 during apoptosis of neurons and astrocytes, J. Neurosci. Res., 48, 168–180.

    Article  CAS  PubMed  Google Scholar 

  102. Summers, S. A., and Nelson, D. H. (2005) A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing’s syndrome, Diabetes, 54, 591–602.

    CAS  PubMed  Google Scholar 

  103. Turinsky, J., O’ Sullivan, D. M., and Bayly, B. P. (1990) 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo, J. Biol. Chem., 265, 16880–16885.

    CAS  PubMed  Google Scholar 

  104. Gorska, M., Dobrzyn, A., Zendzian-Piotrowska, M., and Gorski, J. (2004) Effect of streptozotocin-diabetes on the functioning of the sphingomyelin-signaling pathway in skeletal muscles of the rat, Horm. Metab. Res., 36, 14–21.

    Article  CAS  PubMed  Google Scholar 

  105. Adams, J. M., Pratipanawatr, T., Berria, R., Wang, E., DeFronzo, R. A., Sullards, M. C., and Mandarino, L. J. (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans, Diabetes, 53, 25–31.

    Article  CAS  PubMed  Google Scholar 

  106. Straczkowski, M., Kowalska, I., Nikolajuk, A., DzienisStraczkowska, S., Kinalska, I., Baranowski, M., ZendzianPiotrowska, M., Brzezinska, Z., and Gorski, J. (2004) Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle, Diabetes, 53, 1215–1221.

    Article  CAS  PubMed  Google Scholar 

  107. Holland, W. L., and Summers, S. A. (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism, Endocrin. Rev., 29, 381–402.

    CAS  Google Scholar 

  108. Hajduch, E., Balendran, A., Batty, I. H., Litherland, G. J., Blair, A. S., Downes, C. P., and Hundal, H. S. (2001) Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signaling in L6 skeletal muscle cells, Diabetologia, 44, 173–183.

    Article  CAS  PubMed  Google Scholar 

  109. Kralik, S. F., Liu, P., Leffler, B. J., and Elmendorf, J. S. (2002) Ceramide and glucosamine antagonism of alternate signaling pathways regulating insulinand osmotic shockinduced glucose transporter 4 translocation, Endocrinology, 143, 37–46.

    Article  CAS  PubMed  Google Scholar 

  110. Powell, D. J., Turban, S., Gray, A., Hajduch, E., and Hundal, H. S. (2004) Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells, Biochem. J., 382, 619–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Watson, M. L., Coghlan, M., and Hundal, H. S. (2009) Modulating serine palmitoyl transferase (SPT) expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells, Biochem. J., 417, 791–801.

    Article  CAS  PubMed  Google Scholar 

  112. Hu, W., Ross, J., Geng, T., Brice, S. E., and Cowart, L. A. (2011) Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance, J. Biol. Chem., 286, 16596–16605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kanety, H., Hemi, R., Papa, M. Z., and Karasik, A. (1996) Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate1, J. Biol. Chem., 271, 9895–9897.

    Article  CAS  PubMed  Google Scholar 

  114. Paz, K., Hemi, R., LeRoith, D., Karasik, A., Elhanany, E., Kanety, H., and Zick, Y. (1997) A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation, J. Biol. Chem., 272, 29911–29918.

    Article  CAS  PubMed  Google Scholar 

  115. Sathyanarayana, P., Barthwal, M. K., Kundu, C. N., Lane, M. E., Bergmann, A., Tzivion, G., and Rana, A. (2002) Activation of the Drosophila MLK by ceramide reveals TNFalpha and ceramide as agonists of mammalian MLK3, Mol. Cell, 10, 1527–1533.

    Article  CAS  PubMed  Google Scholar 

  116. Kim, K. Y., Kim, B. C., Xu, Z., and Kim, S. J. (2004) Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells, J. Biol. Chem., 279, 2947829484.

    Google Scholar 

  117. Aguirre, V., Uchida, T., Yenush, L., Davis, R., and White, M. F. (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307), J. Biol. Chem., 275, 9047–9054.

    Article  CAS  PubMed  Google Scholar 

  118. Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., and Hotamisligil, G. S. (2002) A central role for JNK in obesity and insulin resistance, Nature, 420, 333–336.

    Article  CAS  PubMed  Google Scholar 

  119. Teruel, T., Hernandez, R., and Lorenzo, M. (2001) Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state, Diabetes, 50, 2563–2571.

    Article  CAS  PubMed  Google Scholar 

  120. Zinda, M. J., Vlahos, C. J., and Lai, M. T. (2001) Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87MG cells, Biochem. Biophys. Res. Commun., 280, 1107–1115.

    Article  CAS  PubMed  Google Scholar 

  121. Stratford, S., DeWald, D. B., and Summers, S. A. (2001) Ceramide dissociates 3’-phosphoinositide production from pleckstrin homology domain translocation, Biochem. J., 354, 359–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bourbon, N. A., Sandirasegarane, L., and Kester, M. (2002) Ceramide-induced inhibition of Akt is mediated through protein kinase C zeta: implications for growth arrest, J. Biol. Chem., 277, 3286–3292.

    Article  CAS  PubMed  Google Scholar 

  123. Powell, D. J., Hajduch, E., Kular, G., and Hundal, H. S. (2003) Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism, Mol. Cell. Biol., 23, 7794–7808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hajduch, E., Turban, S., Le Liepvre, X., Le Lay, S., Lipina, C., Dimopoulos, N., Dugail, I., and Hundal, H. S. (2008) Targeting of PKCzeta and PKB to caveolinenriched microdomains represents a crucial step underpinning the disruption in PKB-directed signaling by ceramide, Biochem. J., 410, 369–379.

    Article  CAS  PubMed  Google Scholar 

  125. Lipina, C., and Hundal, H. S. (2011) Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance, Diabetologia, 54, 1596–1607.

    Article  CAS  PubMed  Google Scholar 

  126. Van Epps-Fung, M., Williford, J., Wells, A., and Hardy, R. W. (1997) Fatty acid-induced insulin resistance in adipocytes, Endocrinology, 138, 4338–4345.

    PubMed  Google Scholar 

  127. Mathis, D., Vence, L., and Benoist, C. (2001) Beta-cell death during progression to diabetes, Nature, 414, 792–798.

    Article  CAS  PubMed  Google Scholar 

  128. Chandra, J., Zhivotovsky, B., Zaitsev, V., Juntti-Berggren, L., Berggren, P. O., and Orrenius, S. (2001) Role of apoptosis in pancreatic beta-cell death in diabetes, Diabetes, 50, S44–S47.

    Article  CAS  PubMed  Google Scholar 

  129. Kim, K. A., and Lee, M. S. (2009) Recent progress in research on beta-cell apoptosis by cytokines, Front. Biosci., 14, 657–664.

    Article  CAS  Google Scholar 

  130. Ishizuka, N., Yagui, K., Tokuyama, Y., Yamada, K., Suzuki, Y., Miyazaki, J., Hashimoto, N., Makino, H., Saito, Y., and Kanatsuka, A. (1999) Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells, Metabolism, 48, 1485–1492.

    Article  CAS  PubMed  Google Scholar 

  131. Welsh, N. (1996) Interleukin-1 beta-induced ceramide and diacylglycerol generation may lead to activation of the c-Jun NH2-terminal kinase and the transcription factor ATF2 in the insulin-producing cell line RINm5F, J. Biol. Chem., 271, 8307–8312.

    Article  CAS  PubMed  Google Scholar 

  132. Lupi, R., Dotta, F., Marselli, L., Del Guerra, S., Masini, M., Santangelo, C., Patane, G., Boggi, U., Piro, S., Anello, M., Bergamini, E., Mosca, F., Di Mario, U., Del Prato, S., and Marchetti, P. (2002) Prolonged exposure to free fatty acids has cytostatic and proapoptotic effects on human pancreatic islets: evidence that beta cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated, Diabetes, 51, 1437–1442.

    CAS  PubMed  Google Scholar 

  133. Shimabukuro, M., Higa, M., Zhou, Y. T., Wang, M. Y., Newgard, C. B., and Unger, R. H. (1998) Lipoapoptosis in beta cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression, J. Biol. Chem., 273, 32487–32490.

    Article  CAS  PubMed  Google Scholar 

  134. Maedler, K., Spinas, G. A., Dyntar, D., Moritz, W., Kaiser, N., and Donath, M. Y. (2001) Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function, Diabetes, 50, 69–76.

    Article  CAS  PubMed  Google Scholar 

  135. Lupi, R., Del Guerra, S., Fierabracci, V., Marselli, L., Novelli, M., Patane, G., Boggi, U., Mosca, F., Piro, S., Del Prato, S., and Marchetti, P. (2002) Lipotoxicity in human pancreatic islets and the protective effect of metformin, Diabetes, 51, S134–S137.

    Article  CAS  PubMed  Google Scholar 

  136. Veret, J., Coant, N., Berdyshev, E. V., Skobeleva, A., Therville, N., Bailbe, D., Gorshkova, I., Natarajan, V., Portha, B., and Le Stunff, H. (2011) Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 ß-cells, Biochem. J., 438, 177–189.

    Article  CAS  PubMed  Google Scholar 

  137. Thomas, H. E., McKenzie, M. D., Angstetra, E., Campbell, P. D., and Kay, T. W. (2009) Beta cell apoptosis in diabetes, Apoptosis, 14, 1389–1404.

    Article  PubMed  Google Scholar 

  138. Liadis, N., Salmena, L., Kwan, E., Tajmir, P., Schroer, S. A., Radziszewska, A., Li, X., Sheu, L., Eweida, M., Xu, S., Gaisano, H. Y., Hakem, R., and Woo, M. (2007) Distinct in vivo roles of caspase-8 in beta-cells in physiological and diabetes models, Diabetes, 56, 2302–2311.

    Article  CAS  PubMed  Google Scholar 

  139. Tait, S. W., and Green, D. R. (2010) Mitochondria and cell death: outer membrane permeabilization and beyond, Nat. Rev. Mol. Cell Biol., 11, 621–632.

    Article  CAS  PubMed  Google Scholar 

  140. Birbes, H., El Bawab, S., and Hannun, Y. A. (2001) Mitochondria and ceramide: intertwined roles in regulation of apoptosis, FASEB J., 15, 669–2679.

    Article  Google Scholar 

  141. Taylor, R. C., Cullen, S. P., and Martin, S. J. (2008) Apoptosis: controlled demolition at the cellular level, Nat. Rev. Mol. Cell Biol., 9, 231–241.

    Article  CAS  PubMed  Google Scholar 

  142. Birbes, H., Luberto, C., Hsu, Y. T., El Bawab, S., Hannun, Y. A., and Obeid, L. M. (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria, Biochem. J., 386, 445–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Birbes, H., El Bawab, S., Obeid, L. M., and Hannun, Y. A. (2002) Mitochondria and ceramide: intertwined roles in regulation of apoptosis, Adv. Enzyme Regul., 42, 113–129.

    Article  CAS  PubMed  Google Scholar 

  144. Maestre, I., Jordan, J., Calvo, S., Reig, J. A., Cena, V., Soria, B., Prentki, M., and Roche, E. (2003) Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the betacell line INS-1, Endocrinology, 144, 335–345.

    Article  CAS  PubMed  Google Scholar 

  145. Siskind, L. J., Kolesnick, R. N., and Colombini, M. (2006) Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations, Mitochondrion, 6, 118–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Navarro, P., Valverde, A. M., Rohn, J. L., Benito, M., and Lorenzo, M. (2000) Akt mediates insulin rescue from apoptosis in brown adipocytes: effect of ceramide, Growth Horm. IGF Res., 10, 256–266.

    Article  CAS  PubMed  Google Scholar 

  147. Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A., and Fernandez-Checa, J. C. (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione, J. Biol. Chem., 272, 11369–11377.

    Article  CAS  PubMed  Google Scholar 

  148. Voehringer, D. W., McConkey, D. J., McDonnell, T. J., Brisbay, S., and Meyn, R. E. (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus, Proc. Natl. Acad. Sci. USA, 95, 2956–2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, A. Y., Teggatz, E. G., Zou, A. P., Campbell, W. B., and Li, P. L. (2005) Endostatin uncouples NOand Ca2+ response to bradykinin through enhanced O2 ·–production in the intact coronary endothelium, Am. J. Physiol. Heart Circ. Physiol., 288, H686–H694.

    Article  CAS  PubMed  Google Scholar 

  150. Hatanaka, Y., Fujii, J., Fukutomi, T., Watanabe, T., Che, W., Sanada, Y., Igarashi, Y., and Taniguchi, N. (1998) Reactive oxygen species enhances the induction of inducible nitric oxide synthase by sphingomyelinase in RAW264.7 cells, Biochim. Biophys. Acta, 1393, 203–210.

    Article  CAS  PubMed  Google Scholar 

  151. Pilane, C. M., and LaBelle, E. F. (2004) NO induced apoptosis of vascular smooth muscle cells accompanied by ceramide increase, J. Cell. Physiol., 199, 310–315.

    Article  CAS  PubMed  Google Scholar 

  152. Franzen, R., Fabbro, D., Aschrafi, A., Pfeilschifter, J., and Huwiler, A. (2002) Nitric oxide induces degradation of the neutral ceramidase in rat renal mesangial cells and is counterregulated by protein kinase C, J.Biol. Chem., 277, 46184–46190.

    Article  CAS  PubMed  Google Scholar 

  153. Di Paola, M., Cocco, T., and Lorusso, M. (2000) Ceramide interaction with the respiratory chain of heart mitochondria, Biochemistry, 39, 6660–6668.

    Article  PubMed  CAS  Google Scholar 

  154. Gudz, T. I., Tserng, K. Y., and Hoppel, C. L. (1997) Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide, J. Biol. Chem., 272, 2415424158.

    Article  Google Scholar 

  155. Morgan, D., Rebelato, E., Abdulkader, F., Graciano, M. F., Oliveira-Emilio, H. R., Hirata, A. E., Rocha, M. S., Bordin, S., Curi, R., and Carpinelli, A. R. (2009) Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells, Endocrinology, 150, 2197–2201.

    Article  CAS  PubMed  Google Scholar 

  156. Won, J. S., Im, Y. B., Khan, M., Singh, A. K., and Singh, I. (2004) The role of neutral sphingomyelinase produced ceramide in lipopolysaccharide-mediated expression of inducible nitric oxide synthase, J. Neurochem., 88, 583–593.

    Article  CAS  PubMed  Google Scholar 

  157. Shimabukuro, M., Zhou, Y. T., Levi, M., and Unger, R. H. (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes, Proc. Natl. Acad. Sci. USA, 95, 2498–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cnop, M., Foufelle, F., and Velloso, L. A. (2012) Endoplasmic reticulum stress, obesity and diabetes, Trends Mol. Med., 18, 59–68.

    Article  CAS  Google Scholar 

  159. Socha, L., Silva, D., Lesage, S., Goodnow, C., and Petrovsky, N. (2003) The role of endoplasmic reticulum stress in nonimmune diabetes: NOD.k iHEL, a novel model of beta cell death, Ann. N. Y. Acad. Sci., 1005, 178183.

    Google Scholar 

  160. Laybutt, D. R., Preston, A. M., Akerfeldt, M. C., Kench, J. G., Busch, A. K., Biankin, A. V., and Biden, T. J. (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes, Diabetologia, 50, 752–763.

    Article  CAS  PubMed  Google Scholar 

  161. Lai, E., Bikopoulos, G., Wheeler, M. B., Rozakis-Adcock, M., and Volchuk, A. (2008) Differential activation of ER stress and apoptosis in response to chronically elevated free fatty acids in pancreatic beta-cells, Am. J. Physiol. Endocrinol. Metab., 294, e540-E550.

    Article  CAS  Google Scholar 

  162. Riemer, J., Bulleid, N., and Herrmann, J. M. (2009) Disulfide formation in the ER and mitochondria: two solutions to a common process, Science, 324, 1284–1287.

    Article  CAS  PubMed  Google Scholar 

  163. Briaud, I., Harmon, J. S., Kelpe, C. L., Segu, V. B., and Poitout, V. (2001) Lipotoxicity of the pancreatic beta cell is associated with glucose-dependent esterification of fatty acids into neutral lipids, Diabetes, 50, 315–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kelpe, C. L., Moore, P. C., Parazzoli, S. D., Wicksteed, B., Rhodes, C. J., and Poitout, V. (2003) Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis, J. Biol. Chem., 278, 30015–30021.

    Article  CAS  PubMed  Google Scholar 

  165. Guo, J., Qian, Y., Xi, X., Hu, X., Zhu, J., and Han, X. (2010) Blockage of ceramide metabolism exacerbates palmitate inhibition of pro-insulin gene expression in pancreatic beta cells, Mol. Cell. Biochem., 338, 283–290.

    Article  CAS  PubMed  Google Scholar 

  166. Henderson, E., and Stein, R. (1994) c-Jun inhibits transcriptional activation by the insulin enhancer, and the insulin control element is the target of control, Mol. Cell. Biol., 14, 655–662.

    CAS  Google Scholar 

  167. Kaneto, H., Xu, G., Fujii, N., Kim, S., Bonner-Weir, S., and Weir, G. C. (2002) Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression, J. Biol. Chem., 277, 30010–30018.

    Article  CAS  PubMed  Google Scholar 

  168. Bourbon, N. A., Yun, J., and Kester, M. (2002) Ceramide directly activates protein kinase C zeta to regulate a stressactivated protein kinase signaling complex, J. Biol. Chem., 275, 35617–35623.

    Article  Google Scholar 

  169. Furukawa, N., Shirotani, T., Araki, E., Kaneko, K., Todaka, M., Matsumoto, K., Tsuruzoe, K., Motoshima, H., Yoshizato, K., Kishikawa, H., and Shichiri, M. (1999) Possible involvement of atypical protein kinase C (PKC) in glucose-sensitive expression of the human insulin gene: DNA binding activity and transcriptional activity of pancreatic and duodenal homeobox gene-1 (PDX-1) are enhanced via calphostin C-sensitive but phorbol 12-myristate 13-acetate (PMA) and Go 6976-insensitive pathway, Endocrin. J., 46, 43–58.

    Article  CAS  Google Scholar 

  170. Sano, H., Kane, S., Sano, E., Miinea, C. P., Asara, J. M., Lane, W. S., Garner, Ch. W., and Lienhard, G. E. (2003) Insulin-stimulated phosphorylation of a Rab GTPaseactivating protein regulates GLUT4 translocation, J. Biol. Chem., 278, 14599–14602.

    Article  CAS  PubMed  Google Scholar 

  171. Veret, J., Coant, N., Berdyshev, E. V., Skobeleva, A., Therville, N., Bailbe, D., Gorshkova, I., Natarajan, V., Portha, B., and Le Stunff, H. (2011) Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 ß-cells, Biochem. J., 438, 177–189.

    Article  CAS  PubMed  Google Scholar 

  172. Cinar, R., Godlewski, G., Liu, J., Tam, J., Jourdan, T., Mukhopadhyay, B., Harvey-White, J., and Kunos, G. (2014) Hepatic cannabinoid-1 receptors mediate dietinduced insulin resistance by increasing de novo synthesis of long-chain ceramides, Hepatology, 59, 143–153.

    Article  CAS  PubMed  Google Scholar 

  173. Park, J. W., Park, W. J., Kuperman, Y., Boura-Halfon, S., Pewzner-Jung, Y., and Futerman, A. H. (2013) Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes, Hepatology, 57, 525–532.

    Article  CAS  PubMed  Google Scholar 

  174. Bajpeyi, S., Myrland, C. K., Covingto, J. D., Obanda, D., Cefalu, W. T., Smith, S. R., Rustan, A. C., and Ravussin, E. (2014) Lipid in skeletal muscle myotubes is associated to the donors’ insulin sensitivity and physical activity phenotypes, Obesity (Silver Spring), 22, 426–434.

    Article  CAS  Google Scholar 

  175. Frangioudakis, G., Diakanastasis, B., Liao, B. Q., Saville, J. T., Hoffman, N. J., Mitchell, T. W., and Schmitz-Peiffer, C. (2013) Ceramide accumulation in L6 skeletal muscle cells due to increased activity of ceramide synthase isoforms has opposing effects on insulin action to those caused by palmitate treatment, Diabetologia, 56, 26972701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Kuzmenko.

Additional information

Original Russian Text © D. I. Kuzmenko, T. K. Klimentyeva, 2016, published in Biokhimiya, 2016, Vol. 81, No. 9, pp. 1155-1171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmenko, D.I., Klimentyeva, T.K. Role of ceramide in apoptosis and development of insulin resistance. Biochemistry Moscow 81, 913–927 (2016). https://doi.org/10.1134/S0006297916090017

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916090017

Keywords

Navigation