Biochemistry (Moscow)

, Volume 81, Issue 8, pp 876–883 | Cite as

Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+

  • A. M. Tverskoi
  • S. V. Sidorenko
  • E. A. Klimanova
  • O. A. Akimova
  • L. V. Smolyaninova
  • O. D. Lopina
  • S. N. OrlovEmail author


Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the doseand time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of 86Rb+ influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.


proliferation endothelium Na+,K+-ATPase ouabain intracellular Na+ and K+ 



cardiotonic steroids


human umbilical vein endothelial cells


immediate early genes


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanco, G., and Mercer, R. W. (1998) Isozymes of the NaK-ATPase: heterogeneity in structure, diversity in function, Am. J. Physiol., 275, F633–F650.PubMedGoogle Scholar
  2. 2.
    Scheiner-Bobis, G. (2002) The sodium pump. Its molecular properties and mechanisc of ion transport, Eur. J. Biochem., 269, 2424–2433.CrossRefPubMedGoogle Scholar
  3. 3.
    Clarke, R. J., and Fan, X. (2011) Pumping ions, Clin. Exp. Pharmacol. Physiol., 38, 726–733.CrossRefPubMedGoogle Scholar
  4. 4.
    Taurin, S., Hamet, P., and Orlov, S. N. (2003) Na/K pump and intracellular monovalent cations: novel mechanism of excitation–transcription coupling involved in inhibition of apoptosis, Mol. Biol., 37, 371–381.CrossRefGoogle Scholar
  5. 5.
    Orlov, S. N., and Hamet, P. (2006) Intracellular monovalent ions as second messengers, J. Membr. Biol., 210, 161–172.CrossRefPubMedGoogle Scholar
  6. 6.
    Orlov, S. N., Platonova, A. A., Hamet, P., and Grygorczyk, R. (2013) Cell volume and monovalent ion transporters: their role in the triggereing and progression of the cell death machinery, Am. J. Physiol. Cell Physiol., 305, C361–C372.CrossRefPubMedGoogle Scholar
  7. 7.
    Koltsova, S. V., Trushina, Y., Haloui, M., Akimova, O. A., Tremblay, J., Hamet, P., and Orlov, S. N. (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Cai 2+-independent excitation–transcription coupling, PLoS One, 7, e38032.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Orlov, S. N., and Hamet, P. (2015) Salt and gene expression: evidence for Nai +, Ki +-mediated signaling pathways, Eur. J. Physiol., 467, 489–498.CrossRefGoogle Scholar
  9. 9.
    Aperia, A. (2007) New roles for an old Na,K-ATPase emerges as an interesting drug target, J. Intern. Med., 261, 44–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Schoner, W., and Scheiner-Bobis, G. (2007) Endogenous and exogenous cardiac glycosides: their role in hypertension, salt metabolism, and cell growth, Am. J. Physiol. Cell Physiol., 293, C509–C536.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu, J., and Xie, Z. (2010) The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter traficking, Biochim. Biophys. Acta, 1802, 1237–1245.CrossRefPubMedGoogle Scholar
  12. 12.
    Segel, G. B., and Lichtman, M. A. (1980) The apparent discrepancy of ouabain inhibition of cation transport and lymphocyte proliferation is explained by time-dependecy of ouabain binding, J. Cell. Physiol., 104, 21–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Orlov, S. N., Thorin-Trescases, N., Dulin, N. O., Dam, T.V., Fortuno, M. A., Tremblay, J., and Hamet, P. (1999) Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase 3, Cell Death Differ., 6, 661–672.CrossRefPubMedGoogle Scholar
  14. 14.
    Rathbun, W. B., and Betlach, M. V. (1969) Estimation of enzymatically produced orthophosphate in the presence of cysteine and adenosine triphosphate, Anal. Biochem., 28, 436–445.CrossRefPubMedGoogle Scholar
  15. 15.
    Klimanova, E. A., Petrushenko, I. Y., Mitkevich, V. A., Anashkina, A. A., Orlov, S. N., Makarov, A. A., and Lopina, O. D. (2015) Binding of ouabain and marinobufagenin leads to different structural changes in Na, K-ATPase and depends on the enzyme conformation, FEBS Lett., 589, 2668–2674.CrossRefPubMedGoogle Scholar
  16. 16.
    Orlov, S. N., Thorin-Trescases, N., Kotelevtsev, S. V., Tremblay, J., and Hamet, P. (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3, J. Biol. Chem., 274, 16545–16552.CrossRefPubMedGoogle Scholar
  17. 17.
    Orlov, S. N., Thorin-Trescases, N., Pchejetski, D., Taurin, S., Farhat, N., Tremblay, J., Thorin, E., and Hamet, P. (2004) Na+/K+ pump and endothelial cell survival: [Na+]i/[K+]i-independent necrosis triggered by ouabain, and protection against apoptosis mediated by elevation of [Na+]i, Pflugers Arch., 448, 335–345.CrossRefPubMedGoogle Scholar
  18. 18.
    Akimova, O. A., Tverskoi, A. M., Smolyaninova, L. V., Mongin, A. A., Lopina, O. D., La, J., Dulin, N. O., and Orlov, S. N. (2015) Critical role of the α1-Na+,K+-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain, Apoptosis, 20, 1200–1210.CrossRefPubMedGoogle Scholar
  19. 19.
    Murata, Y., Matsuda, T., Tamada, K., Hosoi, R., Asano, S., Takuma, K., Tanaka, K., and Baba, A. (1996) Ouabaininduced cell proliferation in cultured rat astrocytes, Jpn. J. Pharmacol., 72, 347–353.CrossRefPubMedGoogle Scholar
  20. 20.
    Chueh, S.-C., Guh, J.-H., Chen, J., Lai, M.-K., and Teng, C.-M. (2001) Dual effect of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells, J. Urol., 166, 347–353.CrossRefPubMedGoogle Scholar
  21. 21.
    Abramowitz, J., Dai, C., Hirschi, K. K., Dmitrieva, R. I., Doris, P. A., Liu, L., and Allen, J. C. (2003) Ouabainand marinobufagenin-induced proliferation of human umbilical vein smooth muscle cells and a rat vascular smooth muscle cell line, A7r5, Circulation, 108, 1049–1054.CrossRefGoogle Scholar
  22. 22.
    Li, M., Wang, Q., and Guan, L. (2007) Effects of ouabain on proliferation, intracellular free calcium and c-myc mRNA expression in vascular smooth muscle cells, J. Comp. Physiol., 177, 589–595.CrossRefGoogle Scholar
  23. 23.
    Winnicka, K., Bielawski, K., Bielawska, A., and Miltyk, W. (2010) Dual effects of ouabain, digoxin and proscillaridin A on the regulation of apoptosis in human fibroblasts, Nat. Prod. Res., 24, 274–285.CrossRefPubMedGoogle Scholar
  24. 24.
    Qui, J., Gao, H.-Q., Li, B.-Y., and Shen, L. (2008) Proteomics investigation of protein expression changes in ouabain-induced apoptosis in human umblical vein endothelial cells, J. Cell. Biochem., 104, 1054–1064.CrossRefGoogle Scholar
  25. 25.
    Ren, Y. P., Zhang, M. J., Zhang, T., and Huang, R. W. (2014) Dual effects of ouabain on the regulation of proliferation and apoptosis in human umbelical vein endothelial cells: involvement of Na+,K+-ATPase a-subinits and NFκB, Int. J. Clin. Exp. Med., 7, 1244-1222.Google Scholar
  26. 26.
    Aydemir-Koksoy, A., Abramowitz, J., and Allen, J. C. (2001) Ouabain-induced signaling and vascular smooth muscle cell proliferation, J. Biol. Chem., 276, 46605–46611.CrossRefPubMedGoogle Scholar
  27. 27.
    Holthouse, K. A., Mandal, A., Merchant, M. L., Schelling, J. R., Delamere, N. A., Valdes, R. R., Tyagi, S. C., Lederer, E. D., and Khundmiri, S. J. (2010) Ouabain stimulates NaK-ATPase through a sodium/hydrogen exchanger-1 (NHE1)-dependent mechanism in human kidney proximal tubule cells, Am. J. Physiol. Renal Physiol., 299, F77–F90.CrossRefGoogle Scholar
  28. 28.
    Li, J., Zelenin, S., Aperia, A., and Aizman, O. (2006) Low doses of ouabain protect from serum deprivationtriggered apoptosis and stimulate kidney cell proliferation via activation of NF-kappaB, J. Am. Soc. Nephrol., 17, 1848–1857.CrossRefPubMedGoogle Scholar
  29. 29.
    Ghysel-Burton, J., and Godfraind, T. (1979) Stimulation and inhibition of the sodium pump by cardiotonic steroids in relation to their binding sites and ionotropic effect, Br. J. Pharmacol., 66, 175–184.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gao, J., Wymore, R. S., Wang, Y., Gaudette, G. R., Krukenkamp, I. B., Cohen, I. S., and Mathias, R. T. (2002) Isoform-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides, J. Gen. Physiol., 119, 297–312.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Balzan, S., D’ Urso, G., Nicolini, G., Forini, F., Pellegrino, M., and Montali, U. (2007) Erythrocyte sodium pump stimulation by ouabain and an endogenous ouabain-like factor, Cell Biochem. Funct., 25, 297–303.CrossRefPubMedGoogle Scholar
  32. 32.
    Khundmiri, S. J., Metzler, M. A., Ameen, M., Amin, V., Rane, M. J., and Delamere, N. A. (2006) Ouabain induces cell proliferation through calcium dependent phosphorylation of Akt (protein kinase B) in opossum kidney proximal tubule cells, Am. J. Physiol. Cell Physiol., 291, C1247–1257.CrossRefPubMedGoogle Scholar
  33. 33.
    Saunders, R., and Scheiner-Bobis, G. (2004) Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump, Eur. J. Biochem., 271, 1054–1062.CrossRefPubMedGoogle Scholar
  34. 34.
    Oselkin, M., Tian, D., and Bergold, P. J. (2010) Low-dose cardiotonic steroids increase sodium-potassium ATPase activity that protects hippocampal slice cultures from experimental ischemia, Neurosci. Lett., 473, 67–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Pierre, S., Compe, E., Grillasca, J. P., Plannells, R., Sampol, J., Pressley, T. A., and Maixent, J. M. (2001) RPPCR detection of Na,K-ATPase subunit isoforms in human unbilical vein endothelial cells (HUVEC): evidence for the presence of a1 and b3, Cell. Mol. Biol., 47, 319–324.PubMedGoogle Scholar
  36. 36.
    Laursen, M., Yatime, L., Nissen, P., and Fedosova, N. U. (2013) Crystal structure of the high-affinity Na+,K+ATPase-ouabain complex with Mg2+ bound in cation binding site, Proc. Natl. Acad. Sci. USA, 110, 10958–10963.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Askari, A. (1987) Na+,K+-ATPase: on the number of the ATP sites of the functional unit, J. Bioenerg. Biomembr., 19, 359–374.CrossRefPubMedGoogle Scholar
  38. 38.
    Dmitrieva, R. I., and Doris, P. A. (2004) Ouabain is a potent promoter of growth and activator of ERK1/2 in ouabain-resistant rat renal epithelial cells, J. Biol. Chem., 278, 28160–28166.CrossRefGoogle Scholar
  39. 39.
    Dvela, M., Rosen, H., Ben-Ami, H. C., and Lichtstein, D. (2012) Endogenous ouabain regulates cell viability, Am. J. Physiol. Cell Physiol., 302, C442–C452.CrossRefPubMedGoogle Scholar
  40. 40.
    Nguyen, A. N., Wallace, D. P., and Blanco, G. (2007) Ouabain binds with high affinity to the Na+,K+-ATPase in human polycystic kidney cells and induces extracellular signal-regulated kinase activation and cell proliferation, J. Am. Soc. Nephrol., 18, 46–57.CrossRefPubMedGoogle Scholar
  41. 41.
    Reznik, V. M., Villela, J., and Mendoza, S. A. (1983) Serum stimulates Na+ entry and the Na-K pump in quiescent cultures of epithelial cells (MDCK), J. Cell. Physiol., 117, 211–214.CrossRefPubMedGoogle Scholar
  42. 42.
    Vairo, G., and Hamilton, J. A. (1988) Activation and proliferation signals in murine macrophases: stimulation of Na+,K+-ATPase activity by hemopoietic growth factors and other agents, J. Cell. Physiol., 134, 13–24.CrossRefPubMedGoogle Scholar
  43. 43.
    Marakhova, I. I., Vereninov, A. A., Toropova, F. V., and Vinogradova, T. A. (1998) Na,K-ATPase pump in activated human lymphocytes: on the mechanisms of rapid and longterm increase in K influxes during the initiation of phytohemagglutinin-induced proliferation, Biochim. Biophys. Acta, 1368, 61–72.CrossRefPubMedGoogle Scholar
  44. 44.
    Tian, J., Li, X., Liang, M., Liu, L., Xie, J. X., Ye, Q., Kometiani, P., Tillekeratne, M., Jin, R., and Xie, Z. (2009) Changes in sodium pump expression dictate the effects of ouabain on cell growth, J. Biol. Chem., 284, 14921–14929.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. M. Tverskoi
    • 1
  • S. V. Sidorenko
    • 1
  • E. A. Klimanova
    • 1
  • O. A. Akimova
    • 1
  • L. V. Smolyaninova
    • 1
  • O. D. Lopina
    • 1
  • S. N. Orlov
    • 1
    • 2
    • 3
    Email author
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Tomsk National Research State UniversityTomskRussia
  3. 3.Siberian State Medical UniversityTomskRussia

Personalised recommendations