Photosystem II activity of wild type Synechocystis PCC 6803 and its mutants with different plastoquinone pool redox states

Abstract

To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox mutant with naturally reduced PQ is characterized by slower QA reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH–mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox mutant. Continuous illumination of Ox mutant cells with low-intensity blue light, that accelerates QA reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH–mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.

This is a preview of subscription content, log in to check access.

Abbreviations

DBMIB:

2,5-dibromo-3-methyl-6-isopropyl-pbenzoquinone (dibromo-thymoquinone)

DCMU:

3-(3,4dichlorophenyl)-1,1'-dimethylurea (diuron)

Fd:

ferredoxin

FNR:

ferredoxin-NADP oxidoreductase

Ox :

a terminal oxidase-lacking mutant

PBS:

phycobilisome

PQ:

plastoquinone

PSII (PSI):

photosystem 2 (1)

QA and QB :

primary and secondary PSII quinone electron acceptors

SDH :

a succinate dehydrogenase-lacking mutant

References

  1. 1.

    Mullineaux, C. W., and Holzwarth, A. R. (1990) A proportion of photosystem IIcore complexes are decoupled from the phycobilisome in light-state 2 in the cyanobacterium Synechococcus 6301, FEBS Lett., 260, 245–248.

    CAS  Article  Google Scholar 

  2. 2.

    Bonaventura, C., and Myers, J. (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa, Biochim. Biophys. Acta, 189, 366–383.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Murata, N. (1969) Control of excitation transfer in photosynthesis: I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum, Biochim. Biophys. Acta, 172, 242–251.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Fork, D. C., and Satoh, K. (1983) State I–state II transitions in the thermophilic blue-green alga (cyanobacterium) Synechococcus lividus, Photochem. Photobiol., 37, 421–427.

    CAS  Article  Google Scholar 

  5. 5.

    Allen, J. F. (2003) State transitions–a question of balance, Science, 299, 1530–1532.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Mullineaux, C. W., and Allen, J. F. (1990) State 1–state 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between photosystems I and II, Photosynth. Res., 23, 297–311.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Mao, H.-B., Li, G.-F., Ruan, X., Wu, Q.-Yu, Gong, Y.-D., Zhang, X.-F., and Zhao, N.-M. (2002) The redox state of plastoquinone pool regulates state transitions via cytochrome b 6/f complex in Synechocystis sp. PCC 6803, FEBS Lett., 519, 82–86.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Mullineaux, C. W., and Allen, J. F. (1988) Fluorescence induction transients indicate dissociation of photosystem IIfrom the phycobilisome during the state 2 transition in the cyanobacterium Synechococcus 6301, Biochim. Biophys. Acta, 934, 96–107.

    CAS  Article  Google Scholar 

  9. 9.

    Rakhimberdieva, M. G., Boichenko, V. A., Karapetyan, N. V., and Stadnichuk, I. N. (2001) Interaction of phycobilisomes with photosystem IIdimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis, Biochemistry, 40, 15780–15788.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Mullineaux, C. W., and Allen, J. F. (1986) The state 2 transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the plastoquinone pool, FEBS Lett., 205, 155–160.

    CAS  Article  Google Scholar 

  11. 11.

    Huang, Ch., Yuan, X., Zhao, J., and Bryant, D. A. (2003) Kinetic analyses of state transitions of the cyanobacterium Synechococcus sp. PCC 7002 and its mutant strains impaired in electron transport, Biochim. Biophys. Acta, 1607, 121–130.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Mi, H., Endo, T., Schreiber, U., Ogawa, T., and Asada, K. (1992) Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 33, 1233–1237.

    CAS  Google Scholar 

  13. 13.

    Howitt, C. A., Smith, G. D., and Day, D. A. (1993) Cyanide-insensitive oxygen uptake and pyridine nucleotide dehydrogenases in the cyanobacterium Anabaena PCC 7120, Biochim. Biophys. Acta, 1141, 313–320.

    CAS  Article  Google Scholar 

  14. 14.

    Cooley, J. W., Howitt, C. A., and Vermaas, W. F. J. (2000) Succinate:quinol oxidoreductase in the cyanobacterium Synechocystis sp. strain PCC 6803: presence and function in metabolism and electron transport, J. Bacteriol., 182, 714–722.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Pils, D., and Schmetterer, G. (2001) Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803, FEMS Lett., 203, 217–222.

    CAS  Article  Google Scholar 

  16. 16.

    Meunier, P. C., Colon-Lopez, M. S., and Sherman, L. A. (1997) Temporal changes in state transitions and photosystem organization in the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51 142, Plant Physiol., 115, 991–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kirilovsky, D. (2014) Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions, Photosynth. Res., 126, 3–17.

    Article  PubMed  Google Scholar 

  18. 18.

    Mullineaux, C. W., Tobin, M. J., and Jones, G. R. (1997) Mobility of photosynthetic complexes in thylakoid membranes, Nature, 390, 421–424.

    CAS  Article  Google Scholar 

  19. 19.

    Schluchter, W. M., Shen, G., Zhao, J., and Bryant, D. A. (1996) Characterization of psaI and psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria, Photochem. Photobiol., 64, 53–66.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ivanov, A. G., Krol, M., Sveshnikov, D., Selstam, E., Sandstrom, St., Koochek, M., Park, Y.-I., Vasil’ev, S., Bruce, D., Oquist, G., and Huner, N. P. A. (2006) Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo, Plant Physiol., 141, 1436–1445.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhang, R., Xie, J., and Zhao, J. (2009) The mobility of PSI and PQmolecules in Spirulina platensis cells during state transition, Photosynth. Res., 99, 107–113.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    McConnell, M. D., Koop, R., Vasil’ev, S., and Bruce, D. (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition, Plant Physiol., 130, 1201–1212.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Cooley, J. W., and Vermaas, W. F. J. (2001) Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function, J. Bacteriol., 183, 4251–4258.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Howitt, C. A., Cooley, J. W., Wiskich, J. T., and Vermaas, W. F. J. (2001) A strain of Synechocystis sp. PCC 6803 without photosynthetic oxygen evolution and respiratory oxygen consumption: implications for the study of cyclic photosynthetic electron transport, Planta, 214, 46–56.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Ma, W., Mi, H., and Shen, Yu. (2010) Influence of the redox state of QA on phycobilisome mobility in the cyanobacterium Synechocystis sp. strain PCC6803, J. Luminesc., 130, 1169–1173.

    CAS  Article  Google Scholar 

  26. 26.

    Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., and Oquist, G. (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation, Microbiol. Mol. Biol. Rev., 62, 667–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Howitt, C. A., and Vermaas, W. F. J. (1998) Quinol and cytochrome oxidases in the cyanobacterium Synechocystis PCC 6803, Biochemistry, 37, 17944–17951.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 111, 1–61.

    Google Scholar 

  29. 29.

    Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 148C, 350–382.

    Article  Google Scholar 

  30. 30.

    Schreiber, U., Schliwa, U., and Bilger, W. (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosynth. Res., 10, 51–62.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Berry, S., Schneider, D., Vermaas, W. F. J., and Roegner, V. (2002) Electron transport routes in whole cells of Synechocystis sp. strain PCC 6803: the role of the cytochrome bd-type oxidase, Biochemistry, 41, 3422–3429.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Gorbunov, M. Y., and Falkowski, P. G. (2005) in Photosynthesis. Fundamental Aspects to Global Perspectives: 13th Int. Congr. on Photosynthesis (Van der Est, A., and Bruce, D., eds.) Alliance Communication Group, Lawrence, Kansas, pp. 1029–1031.

  33. 33.

    Kolber, Z. S., Prasil, O., and Falkowski, P. G. (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols, Biochim. Biophys. Acta, 1367, 88–106.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Joliot, A., and Joliot, P. (1964) Kinetic study of the potochemical reaction liberating oxygen during photosynthesis, CR Hebd. Seances Acad. Sci., 258, 4622–4625.

    CAS  Google Scholar 

  35. 35.

    Lavergne, J., and Trissl, Y. W. (1995) Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units, Biophys. J., 68, 2474–2492.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bolychevtseva, Y. V., Kuzminov, F. I., Elanskaya, I. V., Gorbunov, M. Y., and Karapetyan, N. V. (2015) Photosystem activity and state transitions of the photosynthetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool, Biochemistry (Moscow), 80, 50–60.

    CAS  Article  Google Scholar 

  37. 37.

    Zhu, X.-G., Govindjee, Baker, N. R., D’Sturler, E., Ort, D. R., and Long, S. P. (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II, Planta, 223, 114–133.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Talts, E., Oja, V., Ramma, H., Rasulov, B., Anijalg, A., and Laisk, A. (2007) Dark inactivation of ferredoxin-NADP reductase and cyclic electron flow under far-red light in sunflower leaves, Photosynth. Res., 94, 109–120.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Pschorn, R., Ruhle, W., and Wild, A. (1988) Structure and function of ferredoxin-NADP+-oxidoreductase, Photosynth. Res., 17, 217–229.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Pelroy, R. A., and Bassham, J. A. (1972) Photosynthetic and dark carbon metabolism in unicellular blue-green algae, Arch. Microbiol., 86, 25–38.

    CAS  Google Scholar 

  41. 41.

    Pelroy, R. A., Levine, G. A., and Bassham, J. A. (1976) Kinetics of light-dark CO2 fixation and glucose assimilation by Aphanocapsa 6714, J. Bacteriol., 128, 633–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Keren, N., Berg, A., Van Kan, P. J. M., Levanon, H., and Ohad, I. (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow, Proc. Natl. Acad. Sci. USA, 94, 1579–1584.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ohad, I., Berg, A., Berkowicz, S. M., Kaplan, A., and Keren, N. (2011) Photoinactivation of photosystem II: is there more than one way to skin a cat? Physiol. Plant., 142, 79–86.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Van Wijk, K. J., and Van Hasselt, Ph. R. (1993) Photoinhibition of photosystem II in vivo is preceded by down-regulation through light-induced acidification of the lumen: consequences for the mechanism of photoinhibition in vivo, Planta, 189, 359–368.

    Article  PubMed  Google Scholar 

  45. 45.

    Leitsch, J., Schnettger, B., Critchley, Ch., and Krause, G. H. (1994) Two mechanisms of recovery from photoinhibition in vivo: reactivation of photosystem II related and unrelated to D1-protein turnover, Planta, 194, 15–21.

    CAS  Article  Google Scholar 

  46. 46.

    Ivanov, A. G., Sane, P. V., Hurry, V., Oquist, G., and Huner, N. P. A. (2008) Photosystem II reaction centre quenching: mechanisms and physiological role, Photosynth. Res., 98, 565–574.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Andersson, B., and Barber, J. (1996) in Photosynthesis and the Environment. Advances in Photosynthesis and Respiration (Baker, N. R., ed.) Kluwer Academic Publishers, Springer, Dordrecht, Vol. 5, pp. 101–121.

    CAS  Article  Google Scholar 

  48. 48.

    Horton, P., Ruban, A. V., and Walters, R. G. (1994) Regulation of light harvesting in green plants, Plant Physiol., 106, 415–420.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to O. V. Voloshina or Y. V. Bolychevtseva.

Additional information

Original Russian Text © O. V. Voloshina, Y. V. Bolychevtseva, F. I. Kuzminov, M. Y. Gorbunov, I. V. Elanskaya, V. V. Fadeev, 2016, published in Biokhimiya, 2016, Vol. 81, No. 8, pp. 1091-1105.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-412, July 11, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voloshina, O.V., Bolychevtseva, Y.V., Kuzminov, F.I. et al. Photosystem II activity of wild type Synechocystis PCC 6803 and its mutants with different plastoquinone pool redox states. Biochemistry Moscow 81, 858–870 (2016). https://doi.org/10.1134/S000629791608006X

Download citation

Keywords

  • cyanobacteria
  • mutants
  • photosystem II
  • plastoquinone pool
  • state transitions of photosynthetic apparatus