Biochemistry (Moscow)

, Volume 81, Issue 7, pp 762–769 | Cite as

Determination of regions involved in amyloid fibril formation for Aβ(1-40) peptide

  • A. K. Surin
  • E. I. Grigorashvili
  • M. Yu. Suvorina
  • O. M. Selivanova
  • O. V. GalzitskayaEmail author


The studies of amyloid structures and the process of their formation are important problems of biophysics. One of the aspects of such studies is to determine the amyloidogenic regions of a protein chain that form the core of an amyloid fibril. We have theoretically predicted the amyloidogenic regions of the Aβ(1-40) peptide capable of forming an amyloid structure. These regions are from 16 to 21 and from 32 to 36 amino acid residues. In this work, we have attempted to identify these sites experimentally by the method of tandem mass spectrometry. As a result, we show that regions of the Aβ(1-40) peptide from 16 to 22 and from 28 to 40 amino acid residues are resistant to proteases, i.e. they are included in the core of amyloid fibrils. Our results correlate with the results of the theoretical prediction.


Aβ peptide amyloid fibril amyloidogenic regions mass spectrometry Alzheimer’s disease 



amino acid


β-amyloid precursor protein




electron microscopy


high performance liquid chromatography/mass spectrometry


nuclear magnetic resonance


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dovidchenko, N. V., and Galzitskaya, O. V. (2015) Computational approaches to identification of aggregation sites and the mechanism of amyloid growth, Adv. Exp. Med. Biol., 855, 213–239.CrossRefPubMedGoogle Scholar
  2. 2.
    Galzitskaya, O. V., Garbuzynskiy, S. O., and Lobanov, M. Y. (2006) Is it possible to predict amyloidogenic regions from sequence alone? J. Bioinform. Comput. Biol., 4, 373–388.CrossRefPubMedGoogle Scholar
  3. 3.
    Galzitskaya, O. V., Garbuzynskiy, S. O., and Lobanov, M. Y. (2006) Prediction of amyloidogenic and disordered regions in protein chains, PLoS Comput. Biol., 2, e177.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence, Bioinformatics, 26, 326–332.CrossRefPubMedGoogle Scholar
  5. 5.
    Maurer-Stroh, S., Debulpaep, M., Kuemmerer, N., Lopez de la Paz, M., Martins, I. C., Reumers, J., Morris, K. L., Copland, A., Serpell, L., Serrano, L., Schymkowitz, J. W. H., and Rousseau, F. (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices, Nat. Methods, 7, 237–242.CrossRefPubMedGoogle Scholar
  6. 6.
    Walsh, I., Seno, F., Tosatto, S. C. E., and Trovato, A. (2014) PASTA 2.0: an improved server for protein aggregation prediction, Nucleic Acids Res., 42, W301-307.Google Scholar
  7. 7.
    Aguzzi, A. (2009) Cell biology: beyond the prion principle, Nature, 459, 924–925.CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen, S. I. A., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M., and Knowles, T. P. J. (2013) Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism, Proc. Natl. Acad. Sci. USA, 110, 9758–9763.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dovidchenko, N. V., Finkelstein, A. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid protofibril formation, J. Phys. Chem. B, 118, 1189–1197.CrossRefPubMedGoogle Scholar
  10. 10.
    Meisl, G., Yang, X., Hellstrand, E., Frohm, B., Kirkegaard, J. B., Cohen, S. I. A., Dobson, C. M., Linse, S., and Knowles, T. P. J. (2014) Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides, Proc. Natl. Acad. Sci. USA, 111, 9384–9389.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Suvorina, M. Y., Selivanova, O. M., Grigorashvili, E. I., Nikulin, A. D., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2015) Studies of polymorphism of amyloid-β42 peptide from different suppliers, J. Alzheimer’s Dis., 47, 583–593.CrossRefGoogle Scholar
  12. 12.
    Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther, K., Frank, R. W., and Rosch, P. (1995) Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease, Eur. J. Biochem., 233, 293–298.CrossRefPubMedGoogle Scholar
  13. 13.
    Tomaselli, S., Esposito, V., Vangone, P., Van Nuland, N. A. J., Bonvin, A. M. J. J., Guerrini, R., Tancredi, T., Temussi, P. A., and Picone, D. (2006) The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding, Chembiochem, 7, 257–267.CrossRefPubMedGoogle Scholar
  14. 14.
    Lu, J.-X., Qiang, W., Yau, W.-M., Schwieters, C. D., Meredith, S. C., and Tycko, R. (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue, Cell, 154, 1257–1268.CrossRefPubMedGoogle Scholar
  15. 15.
    Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Dobeli, H., Schubert, D., and Riek, R. (2005) 3D structure of Alzheimer’s amyloid-β(1-42) fibrils, Proc. Natl. Acad. Sci. USA, 102, 17342–17347.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cellsurface receptor, Nature, 325, 733–736.CrossRefPubMedGoogle Scholar
  17. 17.
    Selkoe, D. J. (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases, Nat. Cell Biol., 6, 1054–1061.CrossRefPubMedGoogle Scholar
  18. 18.
    Dahlgren, K. N., Manelli, A. M., Stine, W. B., Baker, L. K., Krafft, G. A., and LaDu, M. J. (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability, J. Biol. Chem., 277, 32046–32053.CrossRefPubMedGoogle Scholar
  19. 19.
    Garzon-Rodriguez, W., Sepulveda-Becerra, M., Milton, S., and Glabe, C. G. (1997) Soluble amyloid Aβ-(1-40) exists as a stable dimer at low concentrations, J. Biol. Chem., 272, 21037–21044.CrossRefPubMedGoogle Scholar
  20. 20.
    Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T. (1999) Assembly of Aβ amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease, Biochemistry, 38, 8972–8980.CrossRefPubMedGoogle Scholar
  21. 21.
    Haass, C., Schlossmacher, M. G., Hung, A. Y., VigoPelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., and Teplow, D. B. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism, Nature, 359, 322–325.CrossRefPubMedGoogle Scholar
  22. 22.
    Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., and Malinow, R. (2003) APP processing and synaptic function, Neuron, 37, 925–937.CrossRefPubMedGoogle Scholar
  23. 23.
    Jarrett, J. T., and Lansbury, P. T. (1993) Seeding “onedimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 73, 1055–1058.CrossRefPubMedGoogle Scholar
  24. 24.
    Carrotta, R., Manno, M., Bulone, D., Martorana, V., and San Biagio, P. L. (2005) Protofibril formation of amyloid βprotein at low pH via a non-cooperative elongation mechanism, J. Biol. Chem., 280, 30001–30008.CrossRefPubMedGoogle Scholar
  25. 25.
    Talmard, C., Leuma Yona, R., and Faller, P. (2009) Mechanism of zinc(II)-promoted amyloid formation: zinc(II) binding facilitates the transition from the partially a-helical conformer to aggregates of amyloid β protein(1-28), J. Biol. Inorg. Chem., 14, 449–455.CrossRefPubMedGoogle Scholar
  26. 26.
    Ma, Q.-F., Hu, J., Wu, W.-H., Liu, H.-D., Du, J.-T., Fu, Y., Wu, Y.-W., Lei, P., Zhao, Y.-F., and Li, Y.-M. (2006) Characterization of copper binding to the peptide amyloidβ(1-16) associated with Alzheimer’s disease, Biopolymers, 83, 20–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Turner, A. J., Fisk, L., and Nalivaeva, N. N. (2004) Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration, Ann. N. Y. Acad. Sci., 1035, 1–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang, Y., Rempel, D. L., Zhang, J., Sharma, A. K., Mirica, L. M., and Gross, M. L. (2013) Pulsed hydrogen–deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Aβ) peptide aggregation, Proc. Natl. Acad. Sci. USA, 110, 14604–14609.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lichtenthaler, S. F., Haass, C., and Steiner, H. (2011) Regulated intramembrane proteolysis–lessons from amyloid precursor protein processing, J. Neurochem., 117, 779–796.CrossRefPubMedGoogle Scholar
  30. 30.
    Finder, V. H., and Glockshuber, R. (2007) Amyloid-β aggregation, Neurodegener. Dis., 4, 13–27.CrossRefPubMedGoogle Scholar
  31. 31.
    Dovidchenko, N. V., Glyakina, A. V., Selivanova, O. M., Grigorashvili, E. I., Suvorina, M. Y., Dzhus, U. F., Mikhailina, A. O., Shiliaev, N. G., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2016) One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aβ40 and Aβ42, J. Struct. Biol., 194, 404–414.CrossRefPubMedGoogle Scholar
  32. 32.
    Kodali, R., Williams, A. D., Chemuru, S., and Wetzel, R. (2010) Aβ(1-40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated, J. Mol. Biol., 401, 503–517.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. K. Surin
    • 1
    • 2
  • E. I. Grigorashvili
    • 1
  • M. Yu. Suvorina
    • 1
  • O. M. Selivanova
    • 1
  • O. V. Galzitskaya
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchinoRussia
  2. 2.State Research Center for Applied Microbiology and BiotechnologyObolenskRussia

Personalised recommendations