Skip to main content
Log in

Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

PA:

photosynthetic apparatus

Pheo:

pheophytin

PS I:

photosystem 1

PS II:

photosystem 2

RC:

reaction center

References

  1. Blankenship, R. E. (2002) Electron transfer pathways and components, in Molecular Mechanisms of Photosynthesis (Blankenship, R. E., ed.) Blackwell Science Ltd., Oxford, pp. 124–157.

    Chapter  Google Scholar 

  2. Scheer, H. (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, in Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Grimm, B., Porra, R. J., Rudiger, W., and Scheer, H., eds.) Springer, Dordrecht, pp. 4–11.

    Google Scholar 

  3. Loughlin, P., Lin, Y., and Chen, M. (2013) Chlorophyll d and Acaryochloris marina: current status, Photosynth. Res., 116, 277–293.

    Article  CAS  PubMed  Google Scholar 

  4. Kobayashi, M., Akutsu, S., Fujinuma, D., Furukawa, H., Komatsu, H., Hotota, Y., Kato, Y., Kuroiwa, Y., Watanabe, T., Ohnishi-Kameyama, M., Ono, H., Ohkubo, S., and Miyashita, H. (2013) Physicochemical properties of chlorophylls in oxygenic photosynthesis — succession of co-factors from anoxygenic to oxygenic photosynthesis. Physicochemical properties of chlorophylls in oxygenic photosynthesis, in Photosynthesis (Dubinsky, Z., ed.), Chap. 3, InTech, doi: 10.5772/5546060.

    Google Scholar 

  5. Cohen, R. O., Shen, G., Golbeck, J. H., Xu, W., Chitnis, P. R., Valieva, A. I., Van der Est, A., Pushkar, Y., and Stehlik, D. (2004) Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0, Biochemistry, 43, 4741–4754.

    Article  CAS  PubMed  Google Scholar 

  6. Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., and Krauss, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution, Nature, 411, 909–917.

    Article  CAS  PubMed  Google Scholar 

  7. Manning, W. M., and Strain, H. H. (1943) Chlorophyll d, a green pigment of red algae, J. Biol. Chem., 151, 1–19.

    CAS  Google Scholar 

  8. Miyashita, H., Ikemoto, H., Kurano, N., Adachi, K., Chihara, M., and Miyachi, S. (1996) Chlorophyll d as a major pigment, Nature, 383, 402–403.

    Article  CAS  Google Scholar 

  9. Kashiyama, Y., Miyashita, H., Ohkubo, S., Ogawa, N. O., Chikaraishi, Y., Takano, Y., Suga, H., Toyofuku, T., Nomaki, H., Kitazato, H., Nagata, T., and Ohkouchi, N. (2008) Evidence for global chlorophyll d, Science, 321, 658–658.

    Article  CAS  PubMed  Google Scholar 

  10. Mimuro, M., Akimoto, S., Gotoh, T., Yokono, M., Akiyama, M., Tshuchiya, T., Miyashita, H., Kobayashi, M., and Yamazaki, I. (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina, FEBS Lett., 556, 95–98.

    Article  CAS  PubMed  Google Scholar 

  11. Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., and Miyach, S. (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll, Plant Cell Physiol., 38, 274–281.

    Article  CAS  Google Scholar 

  12. Mimuro, M., Akimoto, S., Yamazaki, I., Miyashita, H., and Miyachi, S. (1999) Fluorescence properties of the chlorophyll d-dominated procaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells, Biochim. Biophys. Acta, 1412, 3746.

    Google Scholar 

  13. Allakhverdiev, S. I., Tomo, T., Shimada, Y., Kindo, H., Nagao, R., Klimov, V. V., and Mimuro, M. (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls, Proc. Natl. Acad. Sci. USA, 107, 3924–3929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Swingley, W. D., Chen, M., Cheung, P. C., Conrad, A. L., Dejesa, L. C., Hao, J., Honchak, B. M., Karbach, L. E., Kurdoglu, A., Lahiri, S., Mastrian, S. D., Miyashita, H., Page, L., Ramakrishna, P., Satoh, S., Sattley, W. M., Shimada, Y., Taylor, H. L., Tomo, T., Tsuchiya, T., Wang, Z. T., Raymond, J., Mimuro, M., Blankenship, R. E., and Touchman, J. W. (2008) Niche adaptation and genome expansion in the chlorophyll d producing cyanobacterium Acaryochloris marina, Proc. Natl. Acad. Sci. USA, 105, 2005–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, M., and Blankenship, R. E. (2011) Expanding the solar spectrum used by photosynthesis, Trends Plant Sci., 16, 427–431.

    Article  CAS  PubMed  Google Scholar 

  16. Tomo, T., Suzuki, T., Hirano, E., Tsuchiya, T., Miyashita, H., Dohmae, N., and Mimuro, M. (2006) Reversible absorption change of chlorophyll d in solutions, Chem. Phys. Lett., 423, 282–287.

    Article  CAS  Google Scholar 

  17. Kobayashi, M., Ohashi, S., Iwamoto, K., Shiraiwa, Y., Kato, Y., and Watanabe, T. (2007) Redox potential of chlorophyll d in vitro, Biochim. Biophys. Acta, 1767, 596602.

    Google Scholar 

  18. Hu, Q., Miyashita, H., Iwasaki, I., Kurano, N., Miyachi, S., Iwaki, M., and Itoh, S. (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis, Proc. Natl. Acad. Sci. USA, 95, 13319–13323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu, Q., Marquardt, J., Iwasaki, I., Miyashita, H., Kurano, N., Morschel, E., and Miyachi, S. (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina, Biochim. Biophys. Acta, 1412, 250–261.

    Article  CAS  PubMed  Google Scholar 

  20. Tomo, T., and Allakhverdiev, S. I. (2014) The divergence of chlorophyll and photosynthetic reactions in chlorophyll d-containing cyanobacteria, in Contemporary Problems of Photosynthesis (Allakhverdiev, S. I., Rubin, A. B., and Shuvalov, V. A., eds.) Vol. 2, Chap. 20, Institute of Computer Science, Izhevsk–Moscow, pp. 115–139.

    Google Scholar 

  21. Tomo, T., Okubo, T., Akimoto, S., Tomo, T., Yokono, M., Miyashita, H., Tshuchiya, T., Noguchi, T., and Mimuro, M. (2007) Identification of special pair of photosystem II in a chlorophyll d-dominated cyanobacterium, Proc. Natl. Acad. Sci. USA, 104, 7283–7288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sivakumar, V., Wang, R., and Hastings, G. (2003) Photooxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina, Biophys. J., 85, 3162–3172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomo, T., Kato, Y., Suzuki, T., Akimoto, S., Okubo, T., Noguchi, T., Hasegawa, K., Tsuchiya, T., Tanaka, K., Fukuya, M., Dohmae, N., Watanabe, T., and Mimuro, M. (2008) Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017, J. Biol. Chem., 283, 18198–18209.

    Article  CAS  PubMed  Google Scholar 

  24. Schenderlein, M., Cetin, M., Barber, J., Telfer, A., and Schlodder, E. (2008) Spectroscopic studies of the chlorophyll d-containing photosystem I from the cyanobacterium, Acaryochloris marina, Biochim. Biophys. Acta, 1777, 1400–1408.

    Article  CAS  PubMed  Google Scholar 

  25. Telfer, A., Pascal, A., Barber, J., Schenderlein, M., Schlodder, E., and Cetin, M. (2007) Electron transfer reactions in photosystems I and II of the chlorophyll d-containing cyanobacterium, Acaryochloris marina, Photosynth. Res., 91, 143.

    Google Scholar 

  26. Nakamura, A., Suzawa, T., Kato, Y., and Watanabe, T. (2005) Significant species-dependence of P700 redoxpotential as verified by spectroelectrochemistry: comparison of spinach and Thermosynechococcus elongatus, FEBS Lett., 579, 2273–2276.

    Article  CAS  PubMed  Google Scholar 

  27. Onoiko, Y. B. (2010) Chlorophyll d — the main photosynthetic pigment of Acaryochloris marina Miyashita et Chihara (Cyanophyta), Algologiya, 20, 15–32.

    Google Scholar 

  28. Kumazaki, S., Abiko, K., Ikegami, I., Iwaki, M., and Itoh, S. (2002) Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina, FEBS Lett., 530, 153–157.

    Article  CAS  PubMed  Google Scholar 

  29. Itoh, S., Mino, H., Itoh, K., Shigenaga, T., Uzumaki, T., and Iwaki, M. (2007) Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina, Biochemistry, 46, 1247312481.

    Google Scholar 

  30. Umena, Y., Kawakami, K., Shen, J. R., and Kamiya, N. (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å, Nature, 73, 5–60.

    Google Scholar 

  31. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Architecture of the photosynthetic oxygen-evolving center, Science, 303, 1831–1838.

    Article  CAS  PubMed  Google Scholar 

  32. Tomo, T., Akimoto, S., Tsuchiya, T., Fukuya, M., Tanaka, K., and Mimuro, M. (2008) Isolation and spectral characterization of photosystem II reaction center from Synechocystis sp. PCC 6803, Photosynth. Res., 98, 293–302.

    Article  CAS  PubMed  Google Scholar 

  33. Tomo, T., Shinoda, T., Chen, M., Allakhverdiev, S. I., and Akimoto, S. (2014) Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells, Biochim. Biophys. Acta, 1837, 1484–1489.

    Article  CAS  PubMed  Google Scholar 

  34. Allakhverdiev, S. I., Tsuchiya, T., Watabe, K., Kojima, A., Los, D. A., Tomo, T., Klimov, V. V., and Mimuro, M. (2011) Redox potential of primary electron acceptor quinone (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d, Proc. Natl. Acad. Sci. USA, 108, 8054–8058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Satoh, K. (2004) Introduction to the photosystem II reaction center — isolation and biochemical and biophysical characterization, in Oxygenic Photosynthesis: the Light Reactions (Ort, D. R., Yocum, C. F., and Heichel, E. F., eds.) Springer, pp. 193–211.

    Chapter  Google Scholar 

  36. Frese, R. N., Germano, F. L., De Weerd, I. H. M., Van Stokkum, A. Y., Shkuropatov, V. A., Shuvalov, H. J., Van Gorkom, R., Van Grondelle, R., and Dekker, J. P.(2003) Electric field effects on the chlorophylls, pheophytins and β-carotenes in the reaction center of photosystem II, Biochemistry, 42, 9205–9213.

    Article  CAS  PubMed  Google Scholar 

  37. Prokhorenko, V. I., and Holzwarth, A. R. (2000) Primary processes and structure of the photosystem II reaction center: a photon echo study, J. Phys. Chem. B, 104, 1156311578.

    Article  Google Scholar 

  38. Schlodder, E., Cetin, M., Eckert, H.-J., Schmitt, F.-J., Barber, J., and Telfer, A. (2007) Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina, Biochim. Biophys. Acta, 1767, 589–595.

    Article  CAS  PubMed  Google Scholar 

  39. Razeghifard, M. R., Chen, M., Hughes, J. L., Freeman, J., Krausz, E., and Wydrzynski, T. (2005) Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina, Biochemistry, 44, 11178–11187.

    Article  CAS  PubMed  Google Scholar 

  40. Miyashita, H., Ohkubo, S., Komatsu, H., Sorimachi, Y., Fukayama, D., Fujinuma, D., Akutsu S., and Kobayashi, M. (2014) Discovery of chlorophyll d in Acaryochloris marina and chlorophyll f in a unicellular cyanobacterium, strain KC1, isolated from Lake Biwa, J. Phys. Chem. Biophys., 4, 149–158.

    Article  Google Scholar 

  41. Hasegawa, K., and Noguchi, T. (2005) Density functional theory calculations on the dielectric-constant dependence of the oxidation potential of chlorophyll: implication for the high potential of P680 in photosystem II, Biochemistry, 44, 8865–8872.

    Article  CAS  PubMed  Google Scholar 

  42. Renger, G. (2007) Oxidative photosynthetic water splitting: energetics, kinetics and mechanism, Photosynth. Res., 92, 407–425.

    Article  CAS  PubMed  Google Scholar 

  43. Renger, G. (2011) Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism, J. Photochem. Photobiol. B Biol., 104, 35–43.

    Article  CAS  Google Scholar 

  44. Shevela, D., Noring, B., Eckert, H. J., Messinger, J., and Renger, G. (2006) Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors, Phys. Chem. Chem. Phys., 8, 3460–3466.

    Article  CAS  PubMed  Google Scholar 

  45. Gloag, R. S., Ritchie, R. J., Chen, M., Larkum, A. W. D., and Quinnell, R. G. (2007) Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina, Biochim. Biophys. Acta, 1767, 127–135.

    Article  CAS  PubMed  Google Scholar 

  46. Schiller, H., Senger, H., Miyashita, H., Miyachi, S., and Dau, H. (1997) Light-harvesting in Acaryochloris marina–spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system, FEBS Lett., 410, 433436.

    Article  Google Scholar 

  47. Chen, M., Telfer A., Lin, S., Pascal, A., Larkum, A. W. D., Barber, J., and Blankenship, R. E. (2005) The nature of the photosystem II reaction center in the chlorophyll d-containing prokaryote, Acaryochloris marina, Photochem. Photobiol. Sci., 4, 1060–1064.

    Article  CAS  PubMed  Google Scholar 

  48. Chen, M., Schliep, M., Willows, R. D., Cai, Z.-L., Neilan, B. A., and Scheer, H. (2010) A red-shifted chlorophyll, Science, 329, 1318–1319.

    Article  CAS  PubMed  Google Scholar 

  49. Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C. P., Macintyre, I. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., and Des Marais, D. J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites, Nature, 406, 989–992.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, M., Li, Y., Birch, D., and Willows, R. D. (2012) A cyanobacterium that contains chlorophyll f — a red-absorbing photopigment, FEBS Lett., 586, 3249–3254.

    Article  CAS  PubMed  Google Scholar 

  51. Akutsu, S., Fujinuma, D., Furukawa, H., Watanabe, T., Ohnishi-Kameyama, M., Ono, H., Ohkubo, S., Miyashita, H., and Kobayashi, M. (2011) Pigment analysis of a chlorophyll f-containing cyanobacterium strain KC1 isolated from Lake Biwa, Photomed. Photobiol., 33, 35–40.

    CAS  Google Scholar 

  52. Li, Y., Scales, N., Blankenship, R. E., Willows, R. D., and Chen, M. (2012) Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f, Biochim. Biophys. Acta, 1817, 1292–1298.

    Article  CAS  PubMed  Google Scholar 

  53. Li, Y., Cai, Z.-L., and Chen, M. (2013) Spectroscopic properties of chlorophyll f, J. Phys. Chem. B, 117, 1130911317.

    Google Scholar 

  54. Akimoto, S., Shinoda, T., Chen, M., Allakhverdiev, S. I., and Tomo, T. (2015) Energy transfer in the chlorophyll f-containing bacterium, Halomicronemahong dechloris, analyzed by time-resolved fluorescence spectroscopies, Photosynth. Res., 125, 115–122.

    Article  CAS  PubMed  Google Scholar 

  55. Niedzwiedzki, D. M., Liu, H., Chen, M., and Blankenship, R. E. (2014) Excited state properties of chlorophyll f in organic solvents at ambient and cryogenic temperatures, Photosynth. Res., 121, 25–34.

    Article  CAS  PubMed  Google Scholar 

  56. Willows, R. D., Li, Y., Scheer, H., and Chen, M. (2013) Structure of chlorophyll f, Org. Lett., 15, 1588–1590.

    Article  CAS  PubMed  Google Scholar 

  57. Hastings, G., and Wang, R. (2008) Vibrational mode frequency calculations of chlorophyll-d for assessing (P740 +–P740) FTIR difference spectra obtained using photosystem I particles from Acaryochloris marina, Photosynth. Res., 95, 55–62.

    Article  CAS  PubMed  Google Scholar 

  58. Chen, M. (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis, Annu. Rev. Biochem., 83, 317–340.

    Article  CAS  PubMed  Google Scholar 

  59. Schliep, M., Crossett, B., Willows, R. D., and Chen, M. (2010) 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors, J. Biol. Chem., 285, 28450–28456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., and Bryant, D. A. (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in farred light, Science, 345, 1312–1317.

    Article  CAS  PubMed  Google Scholar 

  61. Gan, F., Shen, G., and Bryant, D. A. (2015) Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria, Life, 5, 4–24.

    Article  PubMed Central  Google Scholar 

  62. Airs, R. L., Temperton, B., Sambles, C., Farnham, G., Skill, S. C., and Llewellyn, C. A. (2014) Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation, FEBS Lett., 588, 3770–3777.

    Article  CAS  PubMed  Google Scholar 

  63. Gates, D. M., Keegan, H. J., Schleter, J. C., and Weidne, V. R. (1965) Spectral properties of plants, Appl. Optics, 4, 11–20.

    Article  Google Scholar 

  64. Blankenship, R. E., and Chen, M. (2013) Spectral expansion and antenna reduction can enhance photosynthesis for energy production, Curr. Opin. Chem. Biol., 17, 457–461.

    Article  CAS  PubMed  Google Scholar 

  65. Mielke, S. P., Kiang, N. Y., Blankenship, R. E., Gunner, M. R., and Mauzerall, D. (2011) Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species, Biochim. Biophys. Acta, 1807, 1231–1236.

    Article  CAS  PubMed  Google Scholar 

  66. Mielke, S. P., Kiang, N. Y., Blankenship, R. E., and Mauzerall, D. (2013) Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina, Biochim. Biophys. Acta, 1827, 255–265.

    Article  CAS  PubMed  Google Scholar 

  67. Karapetyan, N. V., Bolychevtseva, Y. V., Yurina, N. P., Terekhova, I. V., Shubin, V. V., and Brecht, M. (2014) Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions, Biochemistry (Moscow), 79, 213–220.

    Article  CAS  Google Scholar 

  68. Hale, G. M., and Querry, M. R. (1943) Optical constants of water in the 200 nm to 200 µm wavelength region, Appl. Optics, 12, 555–563.

    Article  Google Scholar 

  69. Sekar, N., and Ramasamy, R. P. (2015) Recent advances in photosynthetic energy conversion, J. Photochem. Photobiol. C Photochem. Rev., 22, 19–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Allakhverdiev.

Additional information

Original Russian Text © S. I. Allakhverdiev, V. D. Kreslavski, S. K. Zharmukhamedov, R. A. Voloshin, D. V. Korol’kova, T. Tomo, J.-R. Shen, 2016, published in Biokhimiya, 2016, Vol. 81, No. 3, pp. 315–328.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allakhverdiev, S.I., Kreslavski, V.D., Zharmukhamedov, S.K. et al. Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry Moscow 81, 201–212 (2016). https://doi.org/10.1134/S0006297916030020

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916030020

Key words

Navigation