Abstract
Virtually all recombinant proteins are now prepared using fusion domains also known as “tags”. The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.
Abbreviations
- GST:
-
glutathione S-transferase
- hG-CSF:
-
human granulocyte colony-stimulating factor
- hGM-CSF:
-
human granulocyte-macrophage colony-stimulating factor
- hIFN:
-
human interferon
- MBP:
-
maltose-binding protein
References
Bucher, M. H., Evdokimov, A. G., and Waugh, D. S. (2002) Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein, Acta Crystallogr. D Biol. Crystallogr., 58, 392–397.
Butt, T. R., Edavettal, S. C., Hall, J. P., and Mattern, M. R. (2005) SUMO fusion technology for difficult-to-express proteins, Protein Express. Purif., 43, 1–9.
Esposito, D., and Chatterjee, D. K. (2006) Enhancement of soluble protein expression through the use of fusion tags, Curr. Opin. Biotechnol., 17, 353–358.
Pacheco, B., Crombet, L., Loppnau, P., and Cossar, D. (2012) A screening strategy for heterologous protein expression in Escherichia coli with the highest return of investment, Protein Express. Purif., 81, 33–41.
Carson, M., Johnson, D. H., McDonald, H., Brouillette, C., and Delucas, L. J. (2007) His-tag impact on structure, Acta Crystallogr. D Biol. Crystallogr., 63, 295–301.
Chen, Z., Li, Y., and Yuan, Q. (2015) Study the effect of His-tag on chondroitinase ABC I based on characterization of enzyme, Int. J. Biol. Macromol., 78, 96–101.
Li, D. F., Feng, L., Hou, Y. J., and Liu, W. (2013) The expression, purification and crystallization of a ubiquitinconjugating enzyme E2 from Agrocybe aegerita underscore the impact of His-tag location on recombinant protein properties, Acta Crystallogr. F Struct. Biol. Cryst. Commun., 69, 153–157.
Mason, A. B., He, Q. Y., Halbrooks, P. J., Everse, S. J., Gumerov, D. R., Kaltashov, I. A., Smith, V. C., Hewitt, J., and MacGillivray, R. T. (2002) Differential effect of a Histag at the N- and C-termini: functional studies with recombinant human serum transferring, Biochemistry, 41, 9448–9454.
Pajecka, K., Nielsen, C. W., Hauge, A., Zaganas, I., Bak, L. K., Schousboe, A., Plaitakis, A., and Waagepetersen, H. S. (2014) Glutamate dehydrogenase isoforms with N-terminal (His)6- or FLAG-tag retain their kinetic properties and cellular localization, Neurochem. Res., 39, 487–499.
Chaga, G., Hopp, J., and Nelson, P. (1999) Immobilized metal ion affinity chromatography on Co2+-carboxymethyl aspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle, Biotechnol. Appl. Biochem., 29, 1924.
Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems, Appl. Microbiol. Biotechnol., 60, 523–533.
Kosobokova, E. N., and Kosorukov, V. S. (2010) Study on the influence of poly-His domains on the expression level and purification efficiency of human interferon-α-2b, Ros. Bioterapevt. Zh., 4, 107–112.
Kosobokova, E. N., and Kosorukov, V. S. (2013) Recovery of the biological activity of recombinant cytokines during refolding on the affinity column, Vestnik Bashkir. Univer., 4, 1065–1068.
Kosobokova, E. N., Skrypnik, K. A., Pinyugina, M. V., Shcherbakov, A. I., and Kosorukov, V. S. (2013) Optimization of refolding of recombinant human granulocyte macrophagal colony-stimulating factor immobilized on affinity sorbent, Biotekhnologiya, 3, 39–46.
Randolph, T. W. (2012) The two faces of His-tag: immune response versus ease of protein purification, Biotechnol. J., 7, 18–19.
Andersen, K. R., Leksa, N. C., and Schwartz, T. U. (2013) Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification, Proteins, 81, 1857–1861.
Robichon, C., Luo, J., Causey, T. B., Benner, J. S., and Samuelson, J. C. (2011) Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography, Appl. Environ. Microbiol., 77, 4634–4646.
Cheesman, M. J., Kneller, M. B., Kelly, E. J., Thompson, S. J., Yeung, C. K., Eaton, D. L., and Rettie, A. E. (2001) Purification and characterization of hexahistidine-tagged cyclohexanone monooxygenase expressed in Saccharomyces cerevisiae and Escherichia coli, Protein Express. Purif., 21, 81–86.
Zvereva, A. S., Petrovskaya, L. E., Rodina, A. V., Frolova, O. Y., Ivanov, P. A., Shingarova, L. N., Komarova, T. V., Dorokhov, Y. L., Dolgikh, D. A., Kirpichnikov, M. P., and Atabekov, J. G. (2009) Production of biologically active human myelocytokines in plants, Biochemistry (Moscow), 74, 1187–1194.
Pradeau-Aubreton, K., Ruff, M., Garnier, J. M., Schultz, P., and Drillien, R. (2010) Vectors for recombinational cloning and gene expression in mammalian cells using modified vaccinia virus Ankara, Anal. Biochem., 404, 103105.
Prickett, K. S., Amberg, D. C., and Hopp, T. P. (1989) A calcium-dependent antibody for identification and purification of recombinant proteins, Biotechniques, 7, 580–589.
Brizzard, B. L., Chubet, R. G., and Vizard, D. L. (1994) Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution, Biotechniques, 16, 730–735.
Slootstra, J. W., Kuperus, D., Pluckthun, A., and Meloen, R. H. (1997) Identification of new tag sequences with differential and selective recognition properties for the antiFLAG monoclonal antibodies M1, M2 and M5, Mol. Divers, 2, 156–164.
Park, S. H., Cheong, C., Idoyaga, J., Kim, J. Y., Choi, J. H., Do, Y., Lee, H., Jo, J. H., Oh, Y. S., Im, W., Steinman, R. M., and Park, C. G. (2008) Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection, J. Immunol. Methods, 331, 27–38.
Einhauer, A., and Jungbauer, A. (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins, J. Biochem. Biophys. Methods, 49, 455–465.
Jang, S. H., Lee, C. H., Kim, Y. S., and Jeong, K. J. (2011) High-level production of a kringle domain variant by highcell-density cultivation of Escherichia coli, Appl. Microbiol. Biotechnol., 92, 327–336.
Huyck, R. W., Keightley, A., and Laity, J. H. (2012) Expression and purification of full length mouse metal response element binding transcription factor-1 using Pichia pastoris, Protein Express. Purif., 85, 86–93.
Papakonstantinou, T., Harris, S. J., Fredericks, D., Harrison, C., Wallace, E. M., and Hearn, M. T. (2009) Synthesis, purification and bioactivity of recombinant human activin A expressed in the yeast Pichia pastoris, Protein Express. Purif., 64, 131–138.
Liu, J., Xu, X., Fu, J., Fan, Z., Lu, C., Lu, J., Zhu, J., and Ye, Q. (2013) Cloning, eukaryotic expression and cellular localization of cysteine and glycine-rich protein 1, Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 29, 690–693.
Sasaki, F., Okuno, T., Saeki, K., Min, L., Onohara, N., Kato, H., Shimizu, T., and Yokomizo, T. (2012) A highaffinity monoclonal antibody against the FLAG-tag useful for G-protein-coupled receptor study, Anal. Biochem., 425, 157–165.
Nonaka, H., Fujishima, S. H., Uchinomiya, S. H., Ojida, A., and Hamachi, I. (2009) FLAG-tag selective covalent protein labeling via a binding-induced acyl-transfer reaction, Bioorg. Med. Chem. Lett., 19, 6696–6699.
Smith, J. C., Derbyshire, R. B., Cook, E., Dunthorne, L., Viney, J., Brewer, S. J., Sassenfeld, H. M., and Bell, L. D. (1984) Chemical synthesis and cloning of a poly(arginine)coding gene fragment designed to aid polypeptide purification, Gene, 32, 321–332.
Brewer, S. J., and Sassenfeld, H. M. (1985) The purification of recombinant proteins using C-terminal polyarginine fusions, Trend Biotechnol., 5, 119–122.
Nock, S., Spudich, J. A., and Wagner, P. (1997) Reversible, site-specific immobilization of polyarginine-tagged fusion proteins on mica surfaces, FEBS Lett., 414, 233–238.
Levin, G., Mendive, F., Targovnik, H. M., Cascone, O., and Miranda, M. V. (2005) Genetically engineered horseradish peroxidase for facilitated purification from baculovirus cultures by cation-exchange chromatography, J. Biotechnol., 118, 363–369.
Fuchs, S. M., and Raines, R. T. (2005) Polyarginine as a multifunctional fusion tag, Protein Sci., 14, 1538–1544.
Schmidt, T. G., and Skerra, A. (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment, Protein Eng., 6, 109–122.
Schmidt, T. G., and Skerra, A. (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins, Nat. Protoc., 2, 1528–1535.
Schmidt, T. G., Batz, L., Bonet, L., Carl, U., Holzapfel, G., Kiem, K., Matulewicz, K., Niermeier, D., Schuchardt, I., and Stanar, K. (2013) Development of the Twin-Streptag® and its application for purification of recombinant proteins from cell culture supernatants, Protein Express. Purif., 92, 54–61.
Wilson, D. S., Keefe, A. D., and Szostak, J. W. (2001) The use of mRNA display to select high-affinity protein-binding peptides, Proc. Natl. Acad. Sci. USA, 98, 3750–3755.
Keefe, A. D., Wilson, D. S., Seelig, B., and Szostak, J. W. (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag, Protein Express. Purif., 23, 440–446.
Mitchell, S. F., and Lorsch, J. R. (2015) Protein affinity purification using intein/chitin binding protein tags, Methods Enzymol., 559, 111–125.
Khatuntseva, S. A., Eldarov, M. A., Redo, V. A., and Skryabin, K. G. (2008) Purification and immobilization of recombinant variants of Brevundimonas diminuta glutaryl7-aminocephalosporanic acid acylase expressed in Escherichia coli cells, J. Biotechnol., 133, 123–126.
Kurek, D. V., Lopatin, C. A., Eldarov, M. A., and Skryabin, K. G. (2008) Chromatographic purification of recombinant protein with the chitin-binding domain as an affinity label URI: http://dspace.vniro.ru/handle/123456789/2129.
Arnau, J., Lauritzen, C., Petersen, G. E., and Pedersen, J. (2006) Current strategies for the use of affinity tags avd tag removal for the purification of recombinant proteins, Protein Express. Purif., 48, 1–13.
Zhao, X., Li, G., and Liang, S. (2013) Several affinity tags commonly used in chromatographic purification, J. Anal. Methods Chem., 2013, 581093.
Nygren, P. A., Stahl, S., and Uhlen, M. (1994) Engineering proteins to facilitate bioprocessing, Trends Biotechnol., 12, 184–188.
Sun, P., Tropea, J. E., and Waugh, D. S. (2011) Enhancing the solubility of recombinant proteins in Escherichia coli by using hexahistidine-tagged maltose-binding protein as a fusion partner, Methods Mol. Biol., 705, 259–274.
Sachdev, D., and Chirgwin, J. M. (2000) Fusions to maltose-binding protein: control of folding and solubility in protein purification, Methods Enzymol., 326, 312–321.
Fox, J. D., Routzahn, K. M., Bucher, M. H., and Waugh, D. S. (2003) Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers, FEBS Lett., 537, 53–57.
Raran-Kurussi, S., and Waugh, D. S. (2012) The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated, PLoS One, 7, e49589.
Pattenden, L. K., and Thomas, W. G. (2008) Amylose affinity chromatography of maltose-binding protein: purification by both native and novel matrix-assisted dialysis refolding methods, Methods Mol. Biol., 421, 169–189.
Needle, D., and Waugh, D. S. (2014) Rescuing aggregation-prone proteins in Escherichia coli with a dual His6MBP tag, Methods Mol. Biol., 1177, 81–94.
Zhang, J., Lv, X., Xu, R., Tao, X., Dong, Y., Sun, A., and Wei, D. (2015) Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli, Appl. Microbiol. Biotechnol., 99, 6705–6713.
De Marco, V., Stier, G., Blandin, S., and De Marco, A. (2004) The solubility and stability of recombinant proteins are increased by their fusion to NusA, Biochem. Biophys. Res. Commun., 322, 766–771.
Davis, G. D., Elisee, C., Newham, D. M., and Harrison, R. G. (1999) New fusion protein systems designed to give soluble expression in Escherichia coli, Biotechnol. Bioeng., 65, 382–388.
Li, M., and Huang, D. (2007) Purification and characterization of prokaryotically expressed human interferonlambda2, Biotechnol. Lett., 29, 1025–1029.
Kohl, T., Schmidt, C., Wiemann, S., Poustka, A., and Korf, U. (2008) Automated production of recombinant human proteins as resource for proteome research, Proteome Sci., 6, 4.
Busso, D., Delagoutte-Busso, B., and Moras, D. (2005) Construction of a set Gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli, Anal. Biochem., 343, 313–321.
Raran-Kurussi, S., and Waugh, D. S. (2014) Unrelated solubility-enhancing fusion partners MBP and NusA utilize a similar mode of action, 111, 2407–2411.
Smith, D. B., and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase, Gene, 67, 31–40.
Harper, S., and Speicher, D. W. (2011) Purification of proteins fused to glutathione S-transferase, Methods Mol. Biol., 681, 259–280.
Young, C. L., Britton, Z. T., and Robinson, A. S. (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications, Biotechnol. J., 7, 620–634.
Costa, S. J., Almeida, A., Castro, A., Domingues, L., and Besir, H. (2013) The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology, Appl. Microbiol. Biotechnol., 97, 6779–6791.
Costa, S., Almeida, A., Castro, A., and Domingues, L. (2014) Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system, Front. Microbiol., 5, 63.
Gill, G. (2005) Something about SUMO inhibits transcription, Curr. Opin. Genet. Dev., 15, 536–541.
Marblestone, J. G., Edavettal, S. C., Lim, Y., Lim, P., Zuo, X., and Butt, T. R. (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO, Protein Sci., 15, 182–189.
Nilsson, B., Moks, T., Jansson, B., Abrahmsen, L., Elmblad, A., Holmgren, E., Henrichson, C., Jones, T. A., and Uhlen, M. (1987) A synthetic IgG-binding domain based on staphylococcal protein A, Protein Eng., 1, 107113.
Hedhammar, M., and Hober, S. (2007) Z(basic) — a novel purification tag for efficient protein recovery, J. Chromatogr. A, 1161, 22–28.
Janssen, D. B. (2004) Evolving haloalkane dehalogenases, Curr. Opin. Chem. Biol., 8, 150–159.
Ohana, R. F., Encell, L. P., Zhao, K., Simpson, D., Slater, M. R., Urh, M., and Wood, K. V. (2009) HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification, Protein Express. Purif., 68, 110–120.
Los, G. V., Encell, L. P., McDougall, M. G., Hartzell, D. D., Karassina, N., Zimprich, C., Wood, M. G., Learish, R., Ohana, R. F., Urh, M., Simpson, D., Mendez, J., Zimmerman, K., Otto, P., Vidugiris, G., Zhu, J., Darzins, A., Klaubert, D. H., Bulleit, R. F., and Wood, K. V. (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis, ACS Chem. Biol., 3, 373–382.
Peterson, S. N., and Kwon, K. (2012) The HaloTag: improving soluble expression and applications in protein functional analysis, Curr. Chem. Genom., 6, 8–17.
Li, Y. (2011) The tandem affinity purification technology: an overview, Biotechnol. Lett., 33, 1487–1499.
Hammarberg, B., Nygren, P. A., Holmgren, E., Elmblad, A., Tally, M., Hellman, U., Moks, T., and Uhlen, M. (1989) Dual affinity fusion approach and its use to express recombinant human insulin-like growth factor II, Proc. Natl. Acad. Sci. USA, 86, 4367–4371.
Tagwerker, C., Flick, K., Cui, M., Guerrero, C., Dou, Y., Auer, B., Baldi, P., Huang, L., and Kaiser, P. (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo crosslinking, Mol. Cell. Proteom., 5, 737–748.
Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration, Nat. Biotechnol., 17, 1030–1032.
Li, Y., Franklin, S., Zhang, M. J., and Vondriska, T. M. (2011) Highly efficient purification of protein complexes from mammalian cells using a novel streptavidinbinding peptide and hexahistidine tandem tag system: application to Bruton’s tyrosine kinase, Protein Sci., 20, 140–149.
Gloeckner, C. J., Boldt, K., Schumacher, A., and Ueffing, M. (2009) Tandem affinity purification of protein complexes from mammalian cells by the Strep/FLAG (SF)-TAP tag, Methods Mol. Biol., 564, 359–372.
Gully, D., Moinier, D., Loiseau, L., and Bouveret, E. (2003) New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification, FEBS Lett., 548, 90–96.
Murayama, T., and Kobayashi, T. (2014) Purification of recombinant proteins with a multifunctional GFP tag, Methods Mol. Biol., 1177, 151–161.
Gasparian, M. E., Ostapchenko, V. G., Dolgikh, D. A., and Kirpichnikov, M. P. (2006) Biochemical characterization of human enteropeptidase light chain, Biochemistry (Moscow), 71, 113–119.
Gasparian, M. E., Bychkov, M. L., Dolgikh, D. A., and Kirpichnikov, M. P. (2011) Strategy for improvement of enteropeptidase efficiency in tag removal processes, Protein Express. Purif., 79, 191–196.
Gogarten, P. J., Senejani, A. G., Zhaxybayeva, O., Olendzenski, L., and Hiliaro, E. (2002) INTEINS: structure, function and evolution, Annu. Rev. Microbiol., 56, 263–287.
Ayala, J. C., Pimienta, E., Rodriguez, C., Anne, J., Vallin, C., Milanes, M. T., King-Batsios, E., Huygen, K., and Van Mellaert, L. (2013) Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans, J. Microbiol. Methods, 94, 192–198.
Klein, W. (2003) Calmodulin-binding peptide as a removable affinity tag for protein purification, Methods Mol. Biol., 205, 79–97.
Sugimoto, N., Igarashi, K., and Samejima, M. (2012) Cellulose affinity purification of fusion proteins tagged with fungal family 1 cellulose-binding domain, Protein Express. Purif., 82, 290–296.
Hillman, M. C., Yang, L. S., Sun, S., Duke, J. L., O’Neil, K. T., Kochie, J. E., Karjoo, A., Nath, P., Breth, L. A., Murphy, K., Ross, O. H., Burn, T. C., Hollis, G. F., and Wynn, R. (2001) A comprehensive system for protein purification and biochemical analysis based on antibodies to c-myc peptide, Protein Express. Purif., 23, 359368.
Backer, M. V., Gaynutdinov, T. I., Aloise, R., Przekop, K., and Backer, J. M. (2002) Engineering S-protein fragments of bovine ribonuclease A for targeted drug delivery, Protein Express. Purif., 26, 455–461.
Tykvart, J., Sacha, P., Barinka, C., Knedlik, T., Starkova, J., Lubkowski, J., and Konvalinka, J. (2012) Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II, Protein Express. Purif., 82, 106–115.
Sueda, S., Tanaka, S., Inoue, S., and Komatsu, H. (2012) A luminescent affinity tag for proteins based on the terbium(III)-binding peptide, Anal. Biochem., 422, 52–54.
Wang, Y., Shao, Q., Yu, X., Kong, W., Hildreth, J. E., and Liu, B. (2011) N-terminal hemagglutinin tag renders lysine-deficient APOBEC3G resistant to HIV-1 Vifinduced degradation by reduced polyubiquitination, J. Virol., 85, 4510–4519.
Liew, O. W., Ching Chong, J. P., Yandle, T. G., and Brennan, S. O. (2005) Preparation of recombinant thioredoxin fused N-terminal proCNP: analysis of enterokinase cleavage products reveals new enterokinase cleavage sites, Protein Express. Purif., 41, 332–340.
Charlton, A., and Zachariou, M. (2011) Tag removal by site-specific cleavage of recombinant fusion proteins, Methods Mol. Biol., 681, 349–367.
Jenny, R. J., Mann, K. G., and Lundblad, R. L. (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa, Protein Express. Purif., 31, 1–11.
Shih, Y. P., Wu, H. C., Hu, S. M., Wang, T. F., and Wang, A. H. (2005) Self-cleavage of fusion protein in vivo using TEV protease to yield native protein, Protein Sci., 14, 936–941.
Youell, J., Fordham, D., and Firman, K. (2011) Production and single-step purification of EGFP and a biotinylated version of the human rhinovirus 14 3C protease, Protein Express. Purif., 79, 258–262.
Mao, H. (2004) A self-cleavable sortase fusion for onestep purification of free recombinant proteins, Protein Express. Purif., 37, 253–263.
Myscofski, D. M., Dutton, E. K., Cantor, E., Zhang, A., and Hruby, D. E. (2001) Cleavage and purification of intein fusion proteins using the Streptococcus gordonii SPEX system, Prep. Biochem. Biotechnol., 31, 275–290.
Lu, W., Sun, Z., Tang, Y., Chen, J., Tang, F., Zhang, J., and Liu, J. N. (2011) Split intein facilitated tag affinity purification for recombinant proteins with controllable tag removal by inducible auto-cleavage, J. Chromatogr. A, 1218, 2553–2560.
Rodriguez, V., Lascani, J., Asenjo, J. A., and Andrews, B. A. (2015) Production of cell-penetrating peptides in Escherichia coli using an intein-mediated system, Appl. Biochem. Biotechnol., 175, 3025–3037.
Kenig, M., Peternel, S., Gaberc-Porekar, V., and Menart, V. (2006) Influence of the protein oligomericity on final yield after affinity tag removal in purification of recombinant proteins, J. Chromatogr. A, 1101, 293–306.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © E. N. Kosobokova, K. A. Skrypnik, V. S. Kosorukov, 2016, published in Biokhimiya, 2016, Vol. 81, No. 3, pp. 299–314.
Rights and permissions
About this article
Cite this article
Kosobokova, E.N., Skrypnik, K.A. & Kosorukov, V.S. Overview of fusion tags for recombinant proteins. Biochemistry Moscow 81, 187–200 (2016). https://doi.org/10.1134/S0006297916030019
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0006297916030019