Skip to main content
Log in

Alzheimer’s disease: An exacerbation of senile phenoptosis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is characterized by progressive memory loss and cognitive decline accompanied by degeneration of neuronal synapses, massive loss of neurons in the brain, eventually resulting in complete degradation of personality and death. Currently, the cause of the disease is not fully understood, but it is believed that the person’s age is the major risk factor for development of Alzheimer’s disease. People who have survived after cerebral stroke or traumatic brain injury have substantially increased risk of developing Alzheimer’s disease. Social exclusion, low social activity, physical inactivity, poor mental performance, and low level of education are among risk factors for development of this neurodegenerative disease, which is consistent with the concept of phenoptosis (Skulachev, V. P., et al. (1999) Biochemistry (Moscow), 64, 1418-1426; Skulachev, M. V., and Skulachev, V. P. (2014) Biochemistry (Moscow), 79, 977-993) stating that rate of aging is related to psychological and social aspects in human behavior. Here we assumed that Alzheimer’s disease might be considered as an exacerbation of senile phenoptosis. If so, then development of this disease could be slowed using mitochondria-targeted antioxidants due to the accumulated data demonstrating a link between mitochondrial dysfunction and oxidative stress both with normal aging and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, D. E., Rapp, P. R., McKay, H. M., Roberts, J. A., and Tuszynski, M. H. (2004) Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons, J. Neurosci., 24, 43734381.

    Google Scholar 

  2. Freeman, S. H., Kandel, R., Cruz, L., Rozkalne, A., Newell, K., Frosch, M. P., Hedley-Whyte, E. T., Locascio, J. J., Lipsitz, L. A., and Hyman, B. T. (2008. Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer’s disease, J. Neuropathol. Exp. Neurol., 67, 1205–1212.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fjell, A. M., and Walhovd, K. B. (2010. Structural brain changes in aging: courses, causes, and cognitive consequences, Rev. Neurosci., 21, 187–221.

    PubMed  Google Scholar 

  4. Isaev, N. K., Stelmashook, E. V., Stelmashook, N. N., Sharonova, I. N., and Skrebitskiy, V. G. (2013. Aging of the brain and SkQ mitochondria-targeted antioxidants, Biochemistry (Moscow), 78, 295–300.

    Article  CAS  Google Scholar 

  5. Peters, A., Sethares, C., and Moss, M. B. (2010. How the primate fornix is affected by age, J. Comp. Neurol., 518, 3962–3980.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bertoni-Freddari, C., Fattoretti, P., Casoli, T., Caselli, U., and Meier-Ruge, W. (1996. Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type, Anal. Quant. Cytol. Histol., 18, 209–213.

    CAS  PubMed  Google Scholar 

  7. Kerbler, G. M., Fripp, J., Rowe, C. C., Villemagne, V. L., Salvado, O., Rose, S., and Coulson, E. J. (2014. Alzheimer’s disease neuroimaging initiative. Basal forebrain atrophy correlates with amyloid ß burden in Alzheimer’s disease, Neuroimage Clin., 7, 105–113.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Grothe, M., Heinsen, H., and Teipel, S. (2012. Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer’s disease, Neurobiol. Aging, 34, 1210–1220.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bishop, N. A., Lu, T., and Yankner, B. A. (2010. Neural mechanisms of ageing and cognitive decline, Nature, 464, 529–535.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Schmitt, K., Grimm, A., Kazmierczak, A., Strosznajder, J. B., Gotz, J., and Eckert, A. (2012. Insights into mitochondrial dysfunction: aging, amyloid-ß, and t-A deleterious trio, Antioxid. Redox Signal., 16, 1456–1466.

    Article  CAS  PubMed  Google Scholar 

  11. Stelmashook, E. V., Isaev, N. K., Genrikhs, E. E., Amel’kina, G. A., Khaspekov, L. G., Skrebitskiy, V. G., and Illarioshkin, S. N. (2014. A role of zinc and copper in pathogenesis of Alzheimer’s and Parkinson’s disease, Biochemistry (Moscow), 79, 391–396.

    Article  CAS  Google Scholar 

  12. Xekardaki, A., Kovari, E., Gold, G., Papadimitropoulou, A., Giacobini, E., Herrmann, F., Giannakopoulos, P., and Bouras, C. (2015. Neuropathological changes in aging brain, Adv. Exp. Med. Biol., 821, 11–17.

    Article  PubMed  Google Scholar 

  13. Tomic, J. L., Pensalfini, A., Head, E., and Glabe, C. G. (2009. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction, Neurobiol. Dis., 35, 352–358.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. McGeer, P. L., and McGeer, E. G. (2013. The amyloid cascade-inflammatory hypothesis of Alzheimer’s disease: implications for therapy, Acta Neuropathol., 126, 479–497.

    Article  CAS  PubMed  Google Scholar 

  15. Kalyn, Ya. B., and Bratsun, A. L. (1999) Distribution and risk factors in developing Alzheimer-like dementia, in Alzheimer’s Disease and Aging: from Neurobiology to Therapy: Materials of Second Russian Conference [in Russian], Moscow, pp. 52–58.

    Google Scholar 

  16. Shively, S., Scher, A. I., Perl, D. P., and Diaz-Arrastia, R. (2012. Dementia resulting from traumatic brain injury: what is the pathology? Arch. Neurol., 69, 1245–1251.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Walker, K. R., Kang, E. L., Whalen, M. J., Shen, Y., and Tesco, G. (2012. Depletion of GGA1 and GGA3 mediates postinjury elevation of BACE1, J. Neurosci., 32, 10423–10437.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Katzman, R. (1993. Clinical and epidemiological aspects of Alzheimer’s disease, Clin. Neurosci., 1, 165–170.

    Google Scholar 

  19. Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2014. Receptor-mediated regulation of senile phenoptosis, Biochemistry (Moscow), 79, 994–1003.

    Article  CAS  Google Scholar 

  20. Skulachev, V. P. (1999. Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  21. Skulachev, V. P. (2012. What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.

    Article  CAS  Google Scholar 

  22. Skulachev, M. V., and Skulachev, V. P. (2014. New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.

    Article  CAS  Google Scholar 

  23. Skulachev, V. P. (2012. Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases, J. Alzheimer’s Dis., 28, 283–289.

    CAS  Google Scholar 

  24. Persson, T., Popescu, B. O., and Cedazo-Minguez, A. (2014) Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxid. Med. Cell. Longev., doi: 10.1155/2014/427318.

    Google Scholar 

  25. Di Domenico, F., Barone, E., Perluigi, M., and Butterfield, D. A. (2015. Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants, Expert Rev. Neurother., 15, 19–40.

    Article  PubMed  Google Scholar 

  26. Stefanova, N. A., Fursova, A. Zh., and Kolosova, N. G. (2010. Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats, J. Alzheimer’s Dis., 21, 479–491.

    CAS  Google Scholar 

  27. Loshchenova, P. S., Sinitsyna, O. I., Fedoseeva, L. A., Stefanova, N. A., and Kolosova, N. G. (2015. Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence-accelerated OXYS rats, Biochemistry (Moscow), 80, 596–603.

    Article  CAS  Google Scholar 

  28. Skulachev, M. V., and Skulachev, V. P. (2015) in Apoptosis and Beyond: the Many Ways Cells Die (Radosevich, J., ed.) Springer-Verlag, Berlin-Heidelberg, in press.

  29. Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014. Alzheimer’s disease like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimer’s Dis., 38, 681–694.

    CAS  Google Scholar 

  30. Kapay, N. A., Isaev, N. K., Stelmashook, E. V., Popova, O. V., Zorov, D. B., Skrebitskiy, V. G., and Skulachev, V. P. (2011. In vivo injected mitochondria-targeted plastoquinone antioxidant SkQR1 prevents ß-amyloid-induced decay of long-term potentiation in rat hippocampal slices, Biochemistry (Moscow), 76, 1367–1370.

    Article  CAS  Google Scholar 

  31. Kapay, N. A., Popova, O. V., Isaev, N. K., Stelmashook, E. V., Kondratenko, R. V., Zorov, D. B., Skrebitsky, V. G., and Skulachev, V. P. (2013. Mitochondria-targeted plastoquinone antioxidant SkQ1 prevents amyloid-ß-induced impairment of long-term potentiation in rat hippocampal slices, J. Alzheimer’s Dis., 36, 377–383.

    CAS  Google Scholar 

  32. Genrikhs, E. E., Stelmashook, E. V., Popova, O. V., Kapay, N. A., Korshunova, G. A., Sumbatyan, N. V., Skrebitsky, V. G., Skulachev, V. P., and Isaev, N. K. (2015. Mitochondriatargeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-ß-induced impairment of long-term potentiation in rat hippocampal slices, J. Drug Target., 23, 347–352.

    Article  CAS  PubMed  Google Scholar 

  33. Ma, T., Hoeffer, C. A., Wong, H., Massaad, C. A., Zhou, P., Iadecola, C., Murphy, M. P., Pautler, R. G., and Klann, E. (2011. Amyloid ß-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide, J. Neurosci., 31, 5589–5595.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. McManus, M. J., Murphy, M. P., and Franklin, J. L. (2011. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease, J. Neurosci., 31, 15703–15715.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bouchard, J., and Villeda, S. A. (2015. Aging and brain rejuvenation as systemic events, J. Neurochem., 132, 5–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Isaev.

Additional information

Original Russian Text © N. K. Isaev, E. V. Stelmashook, E. E. Genrikhs, M. V. Oborina, M. R. Kapkaeva, V. P. Skulachev, 2015, published in Biokhimiya, 2015, Vol. 80, No. 12, pp. 1838-1842.

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, N.K., Stelmashook, E.V., Genrikhs, E.E. et al. Alzheimer’s disease: An exacerbation of senile phenoptosis. Biochemistry Moscow 80, 1578–1581 (2015). https://doi.org/10.1134/S0006297915120056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915120056

Keywords

Navigation