Labi, V., and Erlacher, M. (2015) How cell death shapes cancer, Cell Death Dis.,
6, e1675.
PubMed Central
CAS
Article
PubMed
Google Scholar
Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, D. R., Hengartner, M. O., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., Madeo, F., Malorni, W., Mehlen, P., Nunez, G., Peter, M. E., Piacentini, M., Rubinsztein, D. C., Shi, Y., Simon, H. U., Vandenabeele, P., White, E., Yuan, J., Zhivotovsky, B., Melino, G., and Kroemer, G. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012, Cell Death Differ.,
19, 107120.
Article
Google Scholar
Eckhart, L., Lippens, S., Tschachler, E., and Declercq, W. (2013) Cell death by cornification, Biochim. Biophys. Acta, 1833, 3471–3480.
CAS
Article
PubMed
Google Scholar
Lang, E., and Lang, F. (2015) Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death, Biomed. Res. Int., doi: 10.1155/2015/513518.
Google Scholar
Gilbertson, R. J. (2014) Driving glioblastoma to drink, Cell,
157, 289–290.
CAS
Article
PubMed
Google Scholar
Castedo, M., Perfettini, J. L., Roumier, T., Andreau, K., Medema, R., and Kroemer, G. (2004) Cell death by mitotic catastrophe: a molecular definition, Oncogene,
23, 825837.
Google Scholar
Roninson, I. B., Broude, E. V., and Chang, B. D. (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells, Drug Resist. Updat.,
4, 303–313.
CAS
Article
PubMed
Google Scholar
Nigg, E. A. (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer, 2, 815825.
Article
Google Scholar
Edinger, A. L., and Thompson, C. B. (2004) Death by design: apoptosis, necrosis and autophagy, Curr. Opin. Cell Biol.,
16, 663–669.
CAS
Article
PubMed
Google Scholar
Bras, M., Queenan, B., and Susin, S. A. (2005) Programmed cell death via mitochondria: different modes of dying, Biochemistry (Moscow),
70, 231–239.
CAS
Article
Google Scholar
Kroemer, G., Tolkovsky, A. M., and Zakeri, Z. (2008) Elan vital, elan letal: one life but multiple deaths, Cell Death Differ.,
15, 1089–1090.
CAS
Article
PubMed
Google Scholar
Nakagawa, T., and Yuan, J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis, J. Cell Biol., 150, 887–894.
PubMed Central
CAS
Article
PubMed
Google Scholar
Rosati, E., Sabatini, R., Rampino, G., De Falco, F., Di Ianni, M., Falzetti, F., Fettucciari, K., Bartoli, A., Screpanti, I., and Marconi, P. (2010) Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL, Blood,
116, 2713–2723.
CAS
Article
PubMed
Google Scholar
Yamamuro, A., Kishino, T., Ohshima, Y., Yoshioka, Y., Kimura, T., Kasai, A., and Maeda, S. (2011) Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells, J. Pharmacol. Sci., 115, 239–243.
CAS
Article
PubMed
Google Scholar
Mancini, M., Machamer, C. E., Roy, S., Nicholson, D. W., Thornberry, N. A., Casciola-Rosen, L. A., and Rosen, A. (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis, J. Cell Biol., 149, 603612.
Article
Google Scholar
Ferri, K. F., and Kroemer, G. (2001) Organelle-specific initiation of cell death pathways, Nat. Cell Biol.,
3, 255–263.
Article
Google Scholar
Kurz, T., Terman, A., Gustafsson, B., and Brunk, U. T. (2008) Lysosomes in iron metabolism, ageing and apoptosis, Histochem. Cell Biol.,
129, 389–406.
CAS
Article
Google Scholar
Loughery, J., and Meek, D. (2013) Switching on p53: an essential role for protein phosphorylation? BioDiscovery, 8, 1.
Google Scholar
Valente, L., and Strasser, A. (2013) Distinct target genes and effector processes appear to be critical for p53-activated responses to acute DNA damage versus p53-mediated tumor suppression, BioDiscovery,
8, 3.
Article
Google Scholar
Sakamaki, K., and Satou, Y. (2009) Caspases: evolutionary aspects of their functions in vertebrates, J. Fish Biol., 74, 727–753.
PubMed Central
CAS
Article
PubMed
Google Scholar
McLuskey, K., and Mottram, J. C. (2015) Comparative structural analysis of the caspase family with other clan CD cysteine peptidases, Biochem. J.,
466, 219–232.
PubMed Central
CAS
Article
PubMed
Google Scholar
Boehm, D., Mazurier, C., Giarratana, M. C., Darghouth, D., Faussat, A. M., Harmand, L., and Douay, L. (2013) Caspase-3 is involved in the signaling in erythroid differentiation by targeting late progenitors, PLoS One,
8, e62303.
PubMed Central
CAS
Article
PubMed
Google Scholar
Shalini, S., Dorstyn, L., Dawar, S., and Kumar, S. (2015) Old, new and emerging functions of caspases, Cell Death Differ.,
22, 526–539.
CAS
Article
PubMed
Google Scholar
Creagh, E. M. (2014) Caspase crosstalk: integration of apoptotic and innate immune signaling pathways, Trends Immunol.,
35, 631–640.
CAS
Article
PubMed
Google Scholar
Galluzzi, L., Joza, N., Tasdemir, E., Maiuri, M. C., Hengartner, M., Abrams, J. M., Tavernarakis, N., Penninger, J., Madeo, F., and Kroemer, G. (2008) No death without life: vital functions of apoptotic effectors, Cell Death Differ.,
15, 1113–1123.
PubMed Central
CAS
Article
PubMed
Google Scholar
Poon, I. K., Lucas, C. D., Rossi, A. G., and Ravichandran, K. S. (2014) Apoptotic cell clearance: basic biology and therapeutic potential, Nat. Rev. Immunol.,
14, 166–180.
PubMed Central
CAS
Article
PubMed
Google Scholar
Ware, C. F. (2003) The TNF superfamily, Cytokine Growth Factor Rev.,
14, 181–184.
CAS
Article
PubMed
Google Scholar
Bhardway, A., and Aggarwal, B. B. (2003) Receptor-mediated choreography of life and death, J. Clin. Immunol., 23, 317–332.
Article
Google Scholar
Kischkel, F. C., Lawrence, D. A., Tinel, A., LeBlanc, H., Virmani, A., Schow, P., Gazdar, A., Blenis, J., Arnott, D., and Ashkenazi, A. (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8, J. Biol. Chem.,
76, 46639–46646.
Article
Google Scholar
Ashkenazi, A. (2002) Targeting death and decoy receptors of the tumor-necrosis factor superfamily, Nat. Cancer Rev.,
2, 420–430.
CAS
Article
Google Scholar
Ott, M., Norberg, E., Zhivotovsky, B., and Orrenius, S. (2009) Mitochondrial targeting of tBid/Bax: a role for the TOM complex? Cell Death Differ., 16, 1075–1082.
CAS
Article
PubMed
Google Scholar
Micheau, O., and Tschopp, J. (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell,
114, 181–190.
CAS
Article
PubMed
Google Scholar
Silke, J. (2011) The regulation of TNF signaling: what a tangled web we weave, Curr. Opin. Immunol.,
23, 620626.
Article
Google Scholar
Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer M., Pawlita, M., Krammer, P. H., and Peter, M. E. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins forma death-inducing signaling complex (DISC) with the receptor, EMBO J.,
14, 5579–5588.
PubMed Central
CAS
PubMed
Google Scholar
Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O’ Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., and Dixit, V. M. (1996) FLICE, a novel FADDhomologous ICE/CED-3-like protease, is recruited to theCD95 (Fas/APO-1) death-inducing signaling complex, Cell,
85, 817–827.
CAS
Article
PubMed
Google Scholar
Medema, J. P., Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann, M., Krammer, P. H., and Peter, M. E. (1997) FLICE is activated by association with the CD95 deathinducing signaling complex (DISC), EMBO J.,
16, 27942804.
Article
Google Scholar
Chen, Z. J. (2012) Ubiquitination in signaling to and activation of IKK, Immunol. Rev.,
246, 95–106.
PubMed Central
Article
PubMed
Google Scholar
Shim, J. H., Xiao, C., Paschal, A. E., Bailey, S. T., Rao, P., Hayden, M. S., Lee, K. Y., Bussey, C., Steckel, M., Tanaka, N., Yamada, G., Akira, S., Matsumoto, K., and Ghosh, S. (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo, Genes Dev.,
19, 2668–2681.
PubMed Central
CAS
Article
PubMed
Google Scholar
Haas, T. L., Emmerich, C. H., Gerlach, B., Schmukle, A. C., Cordier, S. M., Rieser, E., Feltham, R., Vince, J., Warnken, U., Weniger, T., Koschny, R., Komander, D., Silke, J., and Walczak, H. (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction, Mol. Cell,
36, 831–844.
CAS
Article
PubMed
Google Scholar
Scheidereit, C. (2006) IκB kinase complexes: gateways to NF-κB activation and transcription, Oncogene,
25, 66856705.
Article
Google Scholar
Bertrand, M. J. M., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J., and Barker, P. A. (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination, Mol. Cell,
30, 689–700.
CAS
Article
PubMed
Google Scholar
Silke, J., and Brink, R. (2010) Regulation of TNFRSF and innate immune signaling complexes by TRAFs and cIAPs, Cell Death Differ.,
17, 35–45.
CAS
Article
PubMed
Google Scholar
Wang, L., Du, F., and Wang, X. (2008) TNF-a induces two distinct caspase-8 activation pathways, Cell,
133, 693–703.
CAS
Article
PubMed
Google Scholar
Dempsey, P. W., Doyle, S. E., He, J. Q., and Cheng, G. (2003) The signaling adaptors and pathways activated by TNF superfamily, Cytokine Growth Factor Rev.,
14, 193209.
Article
Google Scholar
Testa, U. (2004) Apoptotic mechanisms in the control of erythropoiesis, Leukemia,
18, 1176–1199.
CAS
Article
PubMed
Google Scholar
Lalaoui, N., Lindqvist, L. M., Sandow, J. J., and Ekert, P. G. (2015) The molecular relationships between apoptosis, autophagy, and necroptosis, Semin. Cell Dev. Biol.,
39, 6369.
Article
Google Scholar
Van den Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Van den Abeele, P. (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nat. Rev. Mol. Cell Biol.,
15, 135–147.
CAS
Article
Google Scholar
De Almagro, M. C., and Vucic, D. (2015) Necroptosis: pathway diversity and characteristics, Semin. Cell Dev. Biol.,
39, 56–62.
CAS
Article
PubMed
Google Scholar
Szewczyk, A., and Wojtcak, L. (2002) Mitochondria as a pharmacological target, Pharm Rev.,
54, 101–127.
CAS
Article
PubMed
Google Scholar
Jiang, A. J., Jiang, G., Li, L. T., and Zheng, J. N. (2014) Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells, Mol. Biol. Rep.,
42, 267–275.
Article
PubMed
Google Scholar
Jiang, G. B., Zheng, X., Yao, J. H., Han, B. J., Li, W., Wang, J., Huang, H. L., and Liu, Y. J. (2014) Ruthenium(II) polypyridyl complexes induce BEL-7402 cell apoptosis by ROS-mediated mitochondrial pathway, J. Inorg. Biochem., 141, 170–179.
CAS
Article
PubMed
Google Scholar
Huang, L., Zhang, T., Li, S., Duan, J., Ye, F., Li, H., She, Z., Gao, G., and Yang, X. (2014) Anthraquinone G503 induces apoptosis in gastric cancer cells through the mitochondrial pathway, PLoS One,
9, e108286.
PubMed Central
Article
PubMed
Google Scholar
Gogvadze, V., and Zhivotovsky, B. (2014) Mitochondria–a bullseye in cancer therapy, Mitochondrion,
19, Pt. A, 1–2.
CAS
Article
PubMed
Google Scholar
Zou, H., Li, Y., Liu, X., and Wang, X. (1999) An APAF1–cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9, J. Biol. Chem.,
274, 11549–11556.
CAS
Article
PubMed
Google Scholar
Scorrano, L. (2009) Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis, Int. J. Biochem. Cell Biol.,
41, 1875–1883.
CAS
Article
PubMed
Google Scholar
Ferreira, P., Villanueva, R., Cabon, L., Susin, S. A., and Medina, M. (2013) The oxido-reductase activity of the apoptosis inducing factor: a promising pharmacological tool? Curr. Pharm. Des., 19, 2628–2636.
CAS
Article
PubMed
Google Scholar
Polster, B. M. (2013) AIF, reactive oxygen species, and neurodegeneration: a “complex” problem, Neurochem. Int.,
62, 695–702.
PubMed Central
CAS
Article
PubMed
Google Scholar
Yadav, N., and Chandra, D. (2014) Mitochondrial and postmitochondrial survival signaling in cancer, Mitochondrion,
16, 18–25.
CAS
Article
PubMed
Google Scholar
Renault, T. T., and Manon, S. (2011) Bax: addressed to kill, Biochimie,
93, 1379–1391.
CAS
Article
PubMed
Google Scholar
Lithgow, T., Van Driel, R., Bertram, J. F., and Strasser, A. (1994) The protein product of the oncogene bcl-2 is a component of the nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane, Cell Growth Differ.,
5, 411–417.
CAS
PubMed
Google Scholar
Westphal, D., Dewson, G., Czabotar, P. E., and Kluck, R. M. (2011) Molecular biology of Bax and Bak activation and action, Biochim. Biophys. Acta, 1813, 521–531.
CAS
Article
PubMed
Google Scholar
Morciano, G., Giorgi, C., Bonora, M., Punzetti, S., Pavasini, R., Wieckowski, M. R., Campo, G., and Pinton, P. (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury, J. Mol. Cell. Cardiol., 78, 142–153.
CAS
Article
PubMed
Google Scholar
Elkholi, R., Renault, T. T., Serasinghe, M. N., and Chipuk, J. E. (2014) Putting the pieces together: how is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab., 2, 16.
PubMed Central
Article
PubMed
Google Scholar
Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., MacGregor, G. R., and Wallace, D. C. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature,
427, 461–465.
PubMed Central
CAS
Article
PubMed
Google Scholar
Brenner, C., and Grimm, S. (2006) The permeability transition pore complex in cancer cell death, Oncogene,
25, 4744–4756.
CAS
Article
PubMed
Google Scholar
Chinopoulos, C., and Szabadkai, G. (2014) What makes you can also break you. Part III: mitochondrial permeability transition pore formation by an uncoupling channel within the C-subunit ring of the F1FO ATP synthase? Front. Oncol., 4, 235.
PubMed Central
Article
PubMed
Google Scholar
Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature,
434, 652–658.
CAS
Article
PubMed
Google Scholar
Kadowaki, H., Nishitoh, H., and Ichijo, H. (2004) Survival and apoptosis signals in ER stress: the role of protein kinases, J. Chem. Neuroanat., 28, 93–100.
CAS
Article
PubMed
Google Scholar
Wang, T., Yang, D., Li, X., Zhang, H., Zhao, P., Fu, J., Yao, B., and Zhou, Z. (2015) ER stress and ER stressmediated apoptosis are involved in manganese-induced neurotoxicity in the rat striatum in vivo, Neurotoxicology,
48, 109–119.
CAS
Article
PubMed
Google Scholar
Delaunay-Moisan, A., and Appenzeller-Herzog, C. (2015) The antioxidant machinery of the endoplasmic reticulum: protection and signaling, Free Radic. Biol. Med.,
83, 341351.
Article
Google Scholar
Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J., and Thompson, C. B. (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis, J. Cell Biol., 162, 59–69.
PubMed Central
CAS
Article
PubMed
Google Scholar
Rao, R. V., Ellerby, H. M., and Bredesen, D. E. (2004) Coupling endoplasmic reticulum stress to the cell death program, Cell Death Differ.,
11, 372–380.
CAS
Article
PubMed
Google Scholar
Namba, T., Tian, F., Chu, K., Hwang, S. Y., Yoon, K. W., Byun, S., Hiraki, M., Mandinova, A., and Lee, S. W. (2013) CDIP1–BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress, Cell Rep.,
5, 331–339.
CAS
Article
PubMed
Google Scholar
Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and Tohyama, M. (2001) Activation of caspase-12, an endoplasmic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2dependent mechanism in response to the ER stress, J. Biol. Chem.,
276, 13935–13940.
CAS
PubMed
Google Scholar
Momoi, T. (2004) Caspases involved in ER stress-mediated cell death, J. Chem. Neuroanat., 28, 101–105.
CAS
Article
PubMed
Google Scholar
Hetz, C. (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol.,
13, 89–102.
CAS
PubMed
Google Scholar
Dufey, E., Sepulveda, D., Rojas-Rivera, D., and Hetz, C. (2014) Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview, Am. J. Physiol. Cell Physiol., 307, 582–594.
Article
Google Scholar
Morishima, N., Nakanishi, K., Tsuchiya, K., Shibata, T., and Seiwa, E. (2004) Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis, J. Biol. Chem., 279, 50375–50381.
CAS
Article
PubMed
Google Scholar
Hetz, C. A. (2007) ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage, Antioxid. Redox Signal.,
9, 2345–2355.
CAS
Article
PubMed
Google Scholar
Li, C., Wei, J., Li, Y., He, X., Zhou, Q., Yan, J., Zhang, J., Liu, Y., Liu, Y., and Shu, H. B. (2013) Transmembrane protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis, J. Biol. Chem., 288, 17908–17917.
PubMed Central
CAS
Article
PubMed
Google Scholar
Matsuzaki, S., Hiratsuka, T., Kuwahara, R., Katayama, T., and Tohyama, M. (2010) Caspase-4 is partially cleaved by calpain via the impairment of Ca2+ homeostasis under the ER stress, Neurochem. Int.,
56, 352–356.
CAS
Article
PubMed
Google Scholar
Maag, R. S., Hicks, S. W., and Machamer, C. E. (2003) Death from within: apoptosis and the secretory pathway, Curr. Opin. Cell Biol.,
15, 456–461.
CAS
Article
PubMed
Google Scholar
Chandran, S., and Machamer, C. E. (2012) Inactivation of ceramide transfer protein during pro-apoptotic stress by Golgi disassembly and caspase cleavage, Biochem. J.,
442, 391–401.
PubMed Central
CAS
Article
PubMed
Google Scholar
De Duve, C., and Wattiaux, R. (1966) Functions of lysosomes, Annu. Rev. Physiol.,
28, 435–492.
CAS
Article
PubMed
Google Scholar
Aits, S., and Jaattela, M. (2013) Lysosomal cell death at a glance, J. Cell Sci., 126 (Pt. 9), 1905–1912.
CAS
Article
PubMed
Google Scholar
Cesen, M. H., Pegan, K., Spes, A., and Turk, B. (2012) Lysosomal pathways to cell death and their therapeutic applications, Exp. Cell Res.,
318, 1245–1251.
Article
PubMed
Google Scholar
Galaris, D., Skiada, V., and Barbouti, A. (2008) Redox signaling and cancer: the role of “labile” iron, Cancer Lett.,
266, 21–29.
CAS
Article
PubMed
Google Scholar
Agarwal, M. L., Taylor, W. R., Chernov, M. V., Chernova, O. B., and Stark, G. R. (1998) The p53 network, J. Biol. Chem., 273, 1–4.
CAS
Article
PubMed
Google Scholar
Zamaraev, A. V., Kopeina, G. S., Zhivotovsky, B., and Lavrik, I. N. (2015) Cell death controlling complexes and their potential therapeutic role, Cell Mol. Life Sci.,
72, 505–517.
CAS
Article
PubMed
Google Scholar
Imre, G., Heering, J., Takeda, A. N., Husmann, M., Thiede, B., zu Heringdorf, D. M., Green, D. R., Van der Goot, F. G., Sinha, B., Dotsch, V., and Rajalingam, K. (2012) Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis, EMBO J.,
31, 2615–2628.
PubMed Central
CAS
Article
PubMed
Google Scholar