Skip to main content
Log in

Chitin and products of its hydrolysis in Vibrio cholerae ecology

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The role of chitin and its hydrolysis products generated by Vibrio cholerae chitinases in mechanisms of its adaptation in water environments, metabolism, preservation, acquisition of pathogenic potential, and its epidemiological value are reviewed. Chitin utilization by V. cholerae as a source of energy, carbon, and nitrogen is described. Chitin association promotes biofilm formation on natural chitinous surfaces, increasing V. cholerae resistance to adverse factors in ecological niches: the human body and water environments with its inhabitants. Hydrolytic enzymes regulated by the corresponding genes result in complete chitin biodegradation by a chitinolytic catabolic cascade. Consequences of V. cholerae cell and chitin interaction at different hierarchical levels include metabolic and physiological cell reactions such as chemotaxis, cell division, biofilm formation, induction of genetic competence, and commensalic and symbiotic mutual relations with higher organisms, nutrient cycle, pathogenicity for humans, and water organisms that is an example of successful interrelation of bacteria and substratum in the ecology of the microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sikora, A. E. (2013) Proteins secreted via the type II secretion system: smart strategies of Vibrio cholerae to maintain fitness in different ecological niches, PLoS Pathog., 9, e1003126.

  2. Kulikalova, E. S., Urbanovich, L. Ya., Markov, E. Yu., Vishnyakov, V. S., Mironova, L. V., Balakhonov, S. V., and Shkaruba, T. T. (2014) Relationship of Vibrio cholerae with water organisms and its significance in cholera epidemiology, Epidemiol. Vaktsinoprof., 4, 19–25.

    Google Scholar 

  3. Pruzzo, C., Vezzulli, L., and Colwell, R. R. (2008) Global impact of Vibrio cholerae interactions with chitin, Environ. Microbiol., 10, 1400–1410.

    Article  CAS  PubMed  Google Scholar 

  4. Maramovich, A. S., Urbanovich, L. Ya., Kulikalova, E. S., and Shkaruba, T. T. (2009) Role and value of surface water reservoirs in formation and development of VII cholera pandemic, Epidemiol. Infekts. Bolezni, 2, 21–25.

    Google Scholar 

  5. Meibom, K. L., Li, X. B., Nielsen, A. T., Wu, C. Y., Roseman, S., and Schoolnik, G. K. (2004) The Vibrio cholerae chitin utilization program, Proc. Natl. Acad. Sci. USA, 101, 2524–2529.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bartlett, D. H., and Azam, F. (2005) Chitin, cholera, and competence, Science, 310, 1775–1777.

    Article  CAS  PubMed  Google Scholar 

  7. Lutz, C., Erken, M., Noorian, P., Sun, S., and McDougald, D. (2013) Environmental reservoirs and mechanisms of persistence of Vibrio cholerae, Front. Microbiol., 4, 375.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kirn, T. J., Jude, B. A., and Taylor, R. K. (2005) A colonization factor links Vibrio cholerae environmental survival and human infection, Nature, 438, 863–866.

    Article  CAS  PubMed  Google Scholar 

  9. Babenko, A. Yu., and Shelegedin, V. N. (2006) Study on a chitinase complex of the bacterial strain Vibrio sp. X, Biotekhnologiya, 1, 12–19.

    Google Scholar 

  10. Hunt, D. E., Gevers, D., Vahora, N. M., and Polz, M. F. (2008) Conservation of the chitin utilization pathway in the Vibrionaceae, Appl. Environ. Microbiol., 74, 44–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hirano, T., Kadokura, K., Ikegami, T., Shigeta, Y., Kumaki, Y., Hakamata, W., Oku, T., and Nishio, T. (2009) Heterodisaccharide 4-O-(N-acetyl-β-D-glucosaminyl)-Dglucosamine is a specific inducer of chitinolytic enzyme production in Vibrios harboring chitin oligosaccharide deacetylase genes, Glycobiology, 19, 1046–1053.

    Article  CAS  PubMed  Google Scholar 

  12. Mishan’kin, B. N., Shimaniuk, N. Ya., Vodopyanov, S. O., Romanova, L. V., Vodopyanov, A. S., Duvanova, O. V., Atarova, G. T., and Demyanenko, S. V. (2010) The study on Vibrio cholerae O139 chitinolytic complex, Biotekhnologiya, 1, 32–40.

    Google Scholar 

  13. Tran, H. T., Barnich, N., and Mizoguchi, E. (2011) Potential role of chitinases and chitin-binding proteins in host–microbial interactions during the development of intestinal inflammation, Histol. Histopathol., 26, 1453–1464.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Keyhani, N. O., Li, X., and Roseman, S. (2000) Chitin catabolism in the marine bacterium Vibrio furnissii: identification and molecular cloning of a chitoporin, J. Biol. Chem., 275, 33068–33076.

    Article  CAS  PubMed  Google Scholar 

  15. Vezzulli, L., Pezzati, E., Repetto, B., Stauder, M., Giusto, G., and Pruzzo, C. (2008) A general role for surface membrane proteins in attachment to chitin particles and copepods of environmental and clinical vibrios, Lett. Appl. Microbiol., 46, 119–125.

    CAS  PubMed  Google Scholar 

  16. Heidelberg, J. F., Eisen, J. A., Nelson, W. C., Clayton, R. A., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Umayam, L., Gill, S. R., Nelson, K. E., Read, T. D., Tettelin, H., Richardson, D., Ermolaeva, M. D., Vamathevan, J., Bass, S., Qin, H., Dragoi, I., Sellers, P., Mc Donald, L., Utterback, T., Fleishmann, R. D., Nierman, W. C., White, O., Salzberg, S. L., Smith, H. O., Colwell, R. R., Mekalanos, J. J., Venter, J. C., and Fraser, C. M. (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae, Nature, 406, 477–484.

    Article  CAS  PubMed  Google Scholar 

  17. Bhowmick, R., Ghosal, A., and Chatterjee, N. S. (2007) Effect of environmental factors on expression and activity of chitinase genes of vibrios with special reference to Vibrio cholerae, J. Appl. Microbiol., 103, 97–108.

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh, S., Rao, K. H., Sengupta, M., Bhattacharya, S. K., and Datta, A. (2011) Two gene clusters co-ordinate for a functional N-acetylglucosamine catabolic pathway in Vibrio cholerae, Mol. Microbiol., 80, 1549–1560.

    Article  CAS  PubMed  Google Scholar 

  19. Mondal, M., Nag, D., Koley, H., Saha, D. R., and Chatterjee, N. S. (2014) The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine, PLoS One, 9, e103119.

    Article  Google Scholar 

  20. Li, X., and Roseman, S. (2004) The chitinolytic cascade in vibrios is regulated by chitin oligosaccharides and a twocomponent chitin catabolic sensor/kinase, Proc. Natl. Acad. Sci. USA, 101, 627–631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jude, B. A., Martinez, R. M., Skorupski, K., and Taylor, R. K. (2009) Levels of the secreted Vibrio cholerae attachment factor GbpA are modulated by quorum-sensing-induced proteolysis, J. Bacteriol., 191, 6911–6917.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hammer, B. K., and Bassler, B. L. (2007) Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae, Proc. Natl. Acad. Sci. USA, 104, 11145–11149.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. LeCleir, G. R., Buchan, A., and Hollibaugh, J. T. (2004) Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions, Appl. Environ. Microbiol., 70, 6977–6983.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Orikoshi, H., Nakayama, S., Miyamoto, K., Hanato, C., Yasuda, M., Inamori, Y., and Tsujibo, H. (2005) Roles of four chitinases (ChiA, ChiB, ChiC, and ChiD) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7, Appl. Environ. Microbiol., 71, 1811–1815.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bouma, C. L., and Roseman, S. (1996) Sugar transport by the marine chitinolytic bacterium Vibrio furnissii: molecular cloning and analysis of the glucose and N-acetylglucosamine permeases, J. Biol. Chem., 271, 33457–33467.

    Article  CAS  PubMed  Google Scholar 

  26. Park, J. K., Keyhani, N. O., and Roseman, S. (2000) Chitin catabolism in the marine bacterium Vibrio furnissii. Identification, molecular cloning, and characterization of an N-N′-diacetylchitobiose phosphorylase, J. Biol. Chem., 275, 33077–33083.

    Article  CAS  PubMed  Google Scholar 

  27. Li, X., Wang, L. X., Wang, X., and Roseman, S. (2007) The chitin catabolic cascade in the marine bacterium Vibrio cholerae: characterization of a unique chitin oligosaccharide deacetylase, Glycobiology, 17, 1377–1387.

    Article  CAS  PubMed  Google Scholar 

  28. Kaneko, T., and Colwell, R. R. (1975) Adsorption of Vibrio parahaemolyticus onto chitin and copepods, Appl. Microbiol., 29, 269–274.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Shime-Hattori, A., Iida, T., Arita, M., Park, K. S., Kodama, T., and Honda, T. (2006) Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation, FEMS Microbiol. Lett., 264, 89–97.

    Article  CAS  PubMed  Google Scholar 

  30. Folster, J. P., and Connell, T. D. (2002) The extracellular transport signal of the Vibrio cholerae endochitinase (ChiA) is a structural motif located between amino acids 75 and 555, J. Bacteriol., 184, 2225–2234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Chiavelli, D. A., Marsh, J. W., and Taylor, R. K. (2001) The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton, Appl. Environ. Microbiol., 67, 3220–3225.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Reguera, G., and Kolter, R. (2005) Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin, J. Bacteriol., 187, 3551–3555.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Jubair, M., Morris, J. G., and Ali, A. (2012) Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel “persister” phenotype, PLoS One, 7, e45187.

    Article  Google Scholar 

  34. Huq, A., Sack, R. B., Nizam, A., Longini, I. M., Nair, G. B., Ali, A., Morris, J. G., Jr., Khan, M. N., Siddique, A. K., Yunus, M., Albert, M. J., Sack, D. A., and Colwell, R. R. (2005) Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh, Appl. Environ. Microbiol., 71, 4645–4654.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Colwell, R. R. (2004) Infectious disease and environment: cholera as a paradigm for waterborne disease, Int. Microbiol., 7, 285–289.

    PubMed  Google Scholar 

  36. Castro-Rosas, J., and Escartin, E. F. (2002) Adhesion and colonization of Vibrio cholerae O1 on shrimp and crab carapaces, J. Food Prot., 65, 492–498.

    CAS  PubMed  Google Scholar 

  37. Stauder, M., Huq, A., Pezzati, E., Grim, C. J., Ramoino, P., Pane, L., Colwell, R. R., Pruzzo, C., and Vezzulli, L. (2012) Role of GbpA protein, an important virulencerelated colonization factor, for Vibrio cholerae’s survival in the aquatic environment, Environ. Microbiol. Rep., 4, 439–445.

    Article  CAS  PubMed  Google Scholar 

  38. Suzita, R., Abdulamir, A. S., Bakar, F. A., and Son, R. (2009) A mini review: cholera outbreak via shellfish, Am. J. Infect. Dis., 5, 40–47.

    Article  Google Scholar 

  39. Sathiyamurthy, K., Baskaran, A., and Kumar, S. D. (2013) Prevalence of Vibrio cholerae and other vibrios from environmental and seafood sources, Tamil Nadu, India, Brit. Microbiol. Res. J., 3, 538–549.

    Article  CAS  Google Scholar 

  40. Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C. Y., and Schoolnik, G. K. (2005) Chitin induces natural competence in Vibrio cholerae, Science, 310, 1824–1827.

    Article  CAS  PubMed  Google Scholar 

  41. Sun, Y., Bernardy, E. E., Hammer, B. K., and Miyashiro, T. (2013) Competence and natural transformation in vibrios, Mol. Microbiol., 89, 583–595.

    Article  CAS  PubMed  Google Scholar 

  42. Metzger, L. C., and Blokesch, M. (2014) Composition of the DNA-uptake complex of Vibrio cholerae, Mob. Genet. Elements, 4, e28142.

    Article  Google Scholar 

  43. Seitz, P., and Blokesch, M. (2013) Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria, FEMS Microbiol. Rev., 37, 336–363.

    Article  CAS  PubMed  Google Scholar 

  44. Morita, M., Yamamoto, S., Hiyoshi, H., Kodama, T., Okura, M., Arakawa, E., Alam, M., Ohnishi, M., Izumiya, H., and Watanabe, H. (2013) Horizontal gene transfer of a genetic island encoding a type III secretion system distributed in Vibrio cholerae, Microbiol. Immunol., 57, 334–339.

    Article  CAS  PubMed  Google Scholar 

  45. Blokesch, M., and Schoolnik, G. K. (2007) Serogroup conversion of Vibrio cholerae in aquatic reservoirs, PLoS Pathog., 3, e81.

    Article  Google Scholar 

  46. Udden, S. M., Zahid, M. S., Biswas, K., Ahmad, Q. S., Cravioto, A., Nair, G. B., Mekalanos, J. J., and Faruque, S. M. (2008) Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence, Proc. Natl. Acad. Sci. USA, 105, 11951–11956.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Miller, M. C., Keymer, D. P., Avelar, A., Boehm, A. B., and Schoolnik, G. K. (2007) Detection and transformation of genome segments that differ within a coastal population of Vibrio cholerae strains, Appl. Environ. Microbiol., 73, 3695–3704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. De Souza Silva, O., and Blokesch, M. (2010) Genetic manipulation of Vibrio cholerae by combining natural transformation with FLP recombination, Plasmid, 64, 186–195.

    Article  PubMed  Google Scholar 

  49. Yamamoto, S., Morita, M., Izumiya, H., and Watanabe, H. (2010) Chitin disaccharide (GlcNAc)2 induces natural competence in Vibrio cholerae through transcriptional and translational activation of a positive regulatory gene tfoXVC, Gene, 457, 42–49.

    Article  CAS  PubMed  Google Scholar 

  50. Seitz, P., Pezeshgi Modarres, H., Borgeaud, S., Bulushev, R. D., Steinbock, L. J., Radenovic, A., Dal Peraro, M., and Blokesch, M. (2014) ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells, PLoS Genet., 10, e1004066.

    Article  Google Scholar 

  51. Dalia, A. B., Lazinski, D. W., and Camilli, A. (2014) Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae, MBio, 5, e01028.

    Article  Google Scholar 

  52. Antonova, E. S., and Hammer, B. K. (2011) Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene transfer to Vibrio cholerae, FEMS Microbiol. Lett., 322, 68–76.

    Article  CAS  PubMed  Google Scholar 

  53. Lo Scrudato, M., and Blokesch, M. (2013) A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable, Nucleic Acids Res., 41, 3644–3658.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Zhu, J., Miller, M. B., Vance, R. E., Dziejman, M., Bassler, B. L., and Mekalanos, J. J. (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae, Proc. Natl. Acad. Sci. USA, 99, 3129–3134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lenz, D. H., Mok, K. C., Lilley, B. N., Kulkarni, R. V., Wingreen, N. S., and Bassler, B. L. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae, Cell, 118, 69–82.

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto, S., Mitobe, J., Ishikawa, T., Wai, S. N., Ohnishi, M., Watanabe, H., and Izumiya, H. (2014) Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae, Mol. Microbiol., 91, 326–347.

    Article  CAS  PubMed  Google Scholar 

  57. Blokesch, M. (2012) A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae, Mob. Genet. Elements, 2, 224–227.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Suckow, G., Seitz, P., and Blokesch, M. (2011) Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner, J. Bacteriol., 193, 4914–4924.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Matz, C., Mc Dougald, D., Moreno, A. M., Yung, P. Y., Yildiz, F. H., and Kjelleberg, S. (2005) Biofilm formation and phenotypic variation enhance predation driven persistence of Vibrio cholerae, Proc. Natl. Acad. Sci. USA, 102, 16819–16824.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Blokesch, M. (2014) The lifestyle of Vibrio cholerae fosters gene transfers, Microbe, 9, 64–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Markov.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 9, pp. 1334–1343.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, E.Y., Kulikalova, E.S., Urbanovich, L.Y. et al. Chitin and products of its hydrolysis in Vibrio cholerae ecology. Biochemistry Moscow 80, 1109–1116 (2015). https://doi.org/10.1134/S0006297915090023

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915090023

Key words

Navigation