Skip to main content
Log in

Parallel G-quadruplexes formed by guanine-rich microsatellite repeats inhibit human topoisomerase I

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Using UV and CD spectroscopy, we studied the thermodynamic stability and folding topology of G-quadruplexes (G4), formed by G-rich fragments in human microsatellites that differ in the number of guanosines within the repeating unit. The oligonucleotides d(GGGT)4 and d(GGT)4 were shown to form propeller-type parallel-stranded intramolecular G-quadruplexes. The G4 melting temperature is dramatically decreased (by more than 45°C) in the transition from the tri-G-tetrad to the bi-G-tetrad structure. d(GT)n-repeats do not form perfect G-quadruplexes (one-G-tetrad); folded G4-like conformation is not stable at room temperature and is not stabilized by monovalent metal ions. The minimum concentration of K+ that promotes quadruplex folding of d(GGT)4 was found to depend on the supporting Na+ concentration. It was demonstrated for the first time that the complementary regions flanking G4-motifs (as in d(CACTGG-CC-(GGGT)4-TA-CCAGTG)) cannot form a double helix in the case of a parallel G4 due to the steric remoteness, but instead destabilize the structure. Additionally, we investigated the effect of the described oligonucleotides on the activity of topoisomerase I, one of the key cell enzymes, with a focus on the relationship between the stability of the formed quadruplexes and the inhibition degree of the enzyme. The most active inhibitor with IC50 = 0.08 µM was the oligonucleotide d(CACTGG-CC-(GGGT)4-TA-CCAGTG), whose flanking G4-motif sequences reduced the extreme stability of G-quadruplex formed by d(GGGT)4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandstrom, M., Bagshaw, A. T., Gemmell, N. J., and Ellegren, H. (2008) The relationship between microsatellite polymorphism and recombination hot spots in the human genome, Mol. Biol. Evol., 25, 2579–2587.

    Article  PubMed  Google Scholar 

  2. Boland, C. R., and Goel, A. (2010) Microsatellite instability in colorectal cancer, Gastroenterology, 138, 2073–2087.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Neidle, S. (2009) The structures of quadruplex nucleic acids and their drug complexes, Curr. Opin. Struct. Biol., 19, 239–250.

    Article  CAS  PubMed  Google Scholar 

  4. Sissi, C., Gatto, B., and Palumbo, M. (2011) The evolving world of protein-G-quadruplex recognition: a medicinal chemist’s perspective, Biochimie, 93, 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  5. Wu, Y., and Brosh, R. M., ffixJr. (2010) G-Quadruplex nucleic acids and human disease, FEBS J., 277, 3470–3488.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Biffi, G., Tannahill, D., McCafferty, J., and Balasubramanian, S. (2013) Quantitative visualization of DNA G-quadruplex structures in human cells, Nat. Chem., 5, 182–186.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Henderson, A., Wu, Y., Huang, Y. C., Chavez, E. A., Platt, J., Johnson, F. B., Brosh, R. M., ffixJr., Sen, D., and Lansdorp, P. M. (2014) Detection of G-quadruplex DNA in mammalian cells, Nucleic Acids Res., 42, 860–869.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Biffi, G., Di Antonio, M., Tannahill, D., and Balasubramanian, S. (2014) Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells, Nat. Chem., 6, 75–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hershman, S. G., Chen, Q., Lee, J. Y., Kozak, M. L., Yue, P., Wang, L. S., and Johnson, F. B. (2008) Genomic distribution and functional analyses G-quadruplex-forming sequences in Saccharomyces cerevisiae, Nucleic Acids Res., 36, 144–156.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mani, P., Yadav, V. K., Das, S. K., and Chowdhury, S. (2009) Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination, PLos One, 4, e4399.

    Article  Google Scholar 

  11. Verma, A., Yadav, V. K., Basundra, R., Kumar, A., and Chowdhury, S. (2009) Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells, Nucleic Acids Res., 37, 4104–4204.

    Article  Google Scholar 

  12. Lansdorp, P. M. (2005) Major cutbacks at chromosome ends, Trends Biochem. Sci., 30, 388–395.

    Article  CAS  PubMed  Google Scholar 

  13. Tarsounas, M., and Tijsterman, M. (2013) Genomes and G-quadruplexes: for better or for worse, J. Mol. Biol., 425, 4782–4789.

    Article  CAS  PubMed  Google Scholar 

  14. Balasubramanian, S., and Neidle, S. (2009) G-quadruplex nucleic acids as therapeutic targets, Curr. Opin. Chem. Biol., 13, 345–353.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. McLuckie, K. I. E., Di Antonio, M., Zecchini, H., Xian, J., Caldas, C., Krippendorff, B.-F., Tannahill, D., Lowe, C., and Balasubramanian, S. (2013) G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells, J. Am. Chem. Soc., 135, 9640–9643.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. De Soultrait, V. R., Lozach, P. Y., Altmeyer, R., Tarrago-Litvak, L., Litvak, S., and Andreola, M. L. (2002) DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents, J. Mol. Biol., 324, 195–203.

    Article  PubMed  Google Scholar 

  17. Teng, Y., Girvan, A. C., Casson, L. K., Pierce, W. M., ffixJr., Qian, M., Thomas, S. D., and Bates, P. J. (2007) AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin, Cancer Res., 67, 10491–10500.

    Article  CAS  PubMed  Google Scholar 

  18. Sun, D., and Hurley, L. H. (2009) The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression, J. Med. Chem., 52, 2863–2874.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Marchand, C., Pourquier, P., Laco, G. S., Jing, N., and Pommier, Y. (2002) Interaction of human nuclear topoisomerase I with guanosine quartet-forming and guanosinerich single-stranded DNA and RNA oligonucleotides, J. Biol. Chem., 277, 8906–8911.

    Article  CAS  PubMed  Google Scholar 

  20. Shuai, L., Deng, M., Zhang, D., Zhou, Y., and Zhou, X. (2010) Quadruplex-duplex motifs as new topoisomerase I inhibitors, Nucleosides, Nucleotides Nucleic Acids, 29, 841–853.

    Article  CAS  Google Scholar 

  21. Moukharskaya, J., and Verschraegen, C. (2012) Topoisomerase I inhibitors and cancer therapy, Hematol. Oncol. Clin. North Am., 26, 507–525.

    Article  PubMed  Google Scholar 

  22. Rachwal, P. A., Brown, T., and Fox, K. R. (2007) Effect of G-tract length on the topology and stability of intramolecular DNA quadruplexes, Biochemistry, 46, 3036–3044.

    Article  CAS  PubMed  Google Scholar 

  23. Rachwal, P. A., Brown, T., and Fox, K. R. (2007) Sequence effects of single base loops in intramolecular quadruplex DNA, FEBS Lett., 581, 1657–1660.

    Article  CAS  PubMed  Google Scholar 

  24. Rachwal, P. A., Findlow, I. S., Werner, J. M., Brown, T., and Fox, K. R. (2007) Intramolecular DNA quadruplexes with different arrangements of short and long loops, Nucleic Acids Res., 35, 4214–4222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Guedin, A., Gros, J., Alberti, P., and Mergny, J.-L. (2010) How long is too long? Effects of loop size on G-quadruplex stability, Nucleic Acids Res., 38, 7858–7868.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nitiss, J. L., Soans, E., Rogojina, A., Seth, A., and Mishina, M. (2012) Topoisomerase assays: author’s manual, Curr. Protoc. Pharmacol., Chap. 3, Unit 3.3; doi: 10.1002/0471141755.ph0303s57.

    Google Scholar 

  27. Karsisiotis, A. I., Hessari, N. M., Novellino, E., Spada, G. P., Randazzo, A., and Webba da Silva, M. (2011) Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism, Angew. Chem., 50, 10645–10648.

    Article  Google Scholar 

  28. Vorlickova, M., Kejnovska, I., Sagi, J., Renciuk, D., Bednarova, K., Motlova, J., and Kupr, J. (2012) Circular dichroism and guanine quadruplexes, Methods, 57, 64–75.

    Article  CAS  PubMed  Google Scholar 

  29. Dolinnaya, N. G., Yuminova, A. V., Spiridonova, V. A., Arutyunyan, A. M., and Kopylov, A. M. (2012) Coexistence of G-quadruplex and duplex domains within the secondary structure of 31-mer DNA thrombin-binding aptamer, J. Biomol. Struct. Dyn., 30, 524–531.

    Article  CAS  PubMed  Google Scholar 

  30. Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res., 27, 573–580.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Do, N. Q., Lim, K. W., Teo, M. H., Heddi, B., and Phan, A. T. (2011) Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity, Nucleic Acids Res., 39, 9448–9457.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Krishnan-Ghosh, Y., Liu, D., and Balasubramanian, S. (2004) Formation of an interlocked quadruplex dimer by d(GGGT), J. Am. Chem. Soc., 126, 11009–11016.

    Article  CAS  PubMed  Google Scholar 

  33. Coletta, A., and Desideri, A. (2013) Role of the protein in the DNA sequence specificity of the cleavage site stabilized by the camptothecin topoisomerase IB inhibitors: a metadynamics study, Nucleic Acids Res., 41, 9977–9986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Guedin, A., De Cian, A., Gros, J., Lacroix, L., and Mergny, J.-L. (2008) Sequence effects in single-base loops for quadruplexes, Biochimie, 90, 686–696.

    Article  CAS  PubMed  Google Scholar 

  35. Bugaut, A., and Balasubramanian, S. (2008) A sequenceindependent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes, Biochemistry, 47, 689–697.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Jing, N., Gao, X., Rando, R. F., and Hogan, M. E. (1997) Potassium-induced loop conformational transition of a potent anti-HIV oligonucleotide, J. Biomol. Struct. Dyn., 15, 573–585.

    Article  CAS  PubMed  Google Scholar 

  37. Li, M. H., Zhou, Y. H., Luo, Q., and Li, Z. S. (2010) The 3D structures of G-quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas phase, J. Mol. Model., 16, 645–657.

    Article  CAS  PubMed  Google Scholar 

  38. Kelley, S., Boroda, S., Musier-Forsyth, K., and Kankia, B. I. (2011) HIV-integrase aptamer folds into a parallel quadruplex: a thermodynamic study, Biophys. Chem., 155, 82–88.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson, J., Okyere, R., Joseph, A., Musier-Forsyth, K., and Kankia, B. (2013) Quadruplex formation as a molecular switch to turn on intrinsically fluorescent nucleotide analogs, Nucleic Acids Res., 41, 220–228.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mathias, J., Okyere, R., Lomidze, L., Gvarjaladze, D., Musier-Forsyth, K., and Kankia, B. (2014) Thermal stability of quadruplex primers for highly versatile isothermal DNA amplification, Biophys. Chem., 185, 14–18.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, F. M. (1997) Supramolecular self-assembly of d(TGG)4, synergistic effects of K+ and Mg2+, Biophys. J., 73, 348–356.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Dailey, M. M., Miller, M. C., Bates, P. J., Lane, A. N., and Trent, J. O. (2010) Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence, Nucleic Acids Res., 38, 4877–4888.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kelly, J. A., Feigon, J., and Yeates, T. O. (1996) Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG), J. Mol. Biol., 256, 417–422.

    Article  CAS  PubMed  Google Scholar 

  44. Hansel, R., Lohr, F., Trantirek, L., and Dotsch, V. (2013) High-resolution insight into G-overhang architecture, J. Am. Chem. Soc., 135, 2816–2824.

    Article  PubMed  Google Scholar 

  45. Amrane, S., Adrian, M., Heddi, B., Serero, A., Nicolas, A., Mergny, J. L., and Phan, A. T. (2012) Formation of pearl-necklace monomorphic G-quadruplexes in the human CEB25 minisatellite, J. Am. Chem. Soc., 134, 5807–5816.

    Article  CAS  PubMed  Google Scholar 

  46. Gaynutdinov, T. I., Neumann, R. D., and Panyutin, I. G. (2008) Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences, Nucleic Acids Res., 36, 4079–4087.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Zhang, A. Y. Q., Bugaut, A., and Balasubramanian, S. (2011) A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology, Biochemistry, 50, 7251–7258.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Nagatoishi, S., Tanaka, Y., and Tsumoto, K. (2007) Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions, Biochem. Biophys. Res. Commun., 352, 812–817.

    Article  CAS  PubMed  Google Scholar 

  49. Kaliuzhnyi, D. N., Bondarev, F. S., Shchelkina, A. K., Livshits, M. A., and Borisova, O. F. (2008) Intramolecular G-quadruplexes from microsatellite d(GT)12 sequence in the presence of K+, Mol. Biol. (Moscow), 42, 693–700.

    CAS  Google Scholar 

  50. Kaluzhny, D., Shchyolkina, A., Livshits, M., Lysov, Y., and Borisova, O. (2009) A novel intramolecular G-quartet-containing fold of single-stranded d(GT)8 and d(GT)16 oligonucleotides, Biophys. Chem., 143, 161–165.

    Article  CAS  PubMed  Google Scholar 

  51. Salas, T. R., Petruseva, I., Lavrik, O., Bourdoncle, A., Mergny, J. L., Favre, A., and Saintome, C. (2006) Human replication protein A unfolds telomeric G-quadruplexes, Nucleic Acids Res., 34, 4857–4865.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Mohaghegh, P., Karow, J. K., Brosh, R. M., Jr., Bohr, V. A., and Hickson, I. D. (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases, Nucleic Acids Res., 29, 2843–2849.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Cogoi, S., Shchekotikhin, A. E., and Xodo, L. E. (2014) HRAS is silenced by two neighboring G-quadruplexes and activated by MAZ, a zinc-finger transcription factor with DNA unfolding property, Nucleic Acids Res., 42, 8379–8388.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Giraldo, R., Suzuki, M., Chapman, L., and Rhodes, D. (1994) Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study, Proc. Natl. Acad. Sci. USA, 91, 7658–7562.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Jing, N., Marchand, C., Liu, J., Mitra, R., Hogan, M. E., and Pommier, Y. (2000) Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in vitro, J. Biol. Chem., 275, 21460–21467.

    Article  CAS  PubMed  Google Scholar 

  56. Paeschke, K., Simonsson, T., Postberg, J., Rhodes, D., and Lipps, H. J. (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo, Nat. Struct. Mol. Biol., 12, 847–854.

    Article  CAS  PubMed  Google Scholar 

  57. Kang, H. J., Le, T. V., Kim, K., Hur, J., Kim, K. K., and Park, H. J. (2014) Novel interaction of the Z-DNA binding domain of human ADAR1 with the oncogenic c-Myc promoter G-quadruplex, J. Mol. Biol., 426, 2594–2604.

    Article  CAS  PubMed  Google Scholar 

  58. Baldrich, E., and O’Sullivan, C. K. (2005) Ability of thrombin to act as molecular chaperone, inducing formation of quadruplex structure of thrombin-binding aptamer, Anal. Biochem., 341, 194–197.

    Article  CAS  PubMed  Google Scholar 

  59. Gupta, M., Fujimori, A., and Pommier, Y. (1995) Eukaryotic DNA topoisomerases I, Biochim. Biophys. Acta, 1262, 1–14.

    Article  PubMed  Google Scholar 

  60. Sekiguchi, J., Cheng, C., and Shuman, S. (2000) Resolution of a Holliday junction by vaccinia topoisomerase requires a spacer DNA segment 3′ of the CCCTT↓ cleavage sites, Nucleic Acids Res., 28, 2658–2663.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Arimondo, P. B., Moreau, P., Boutorine, A., Bailly, C., Prudhomme, M., Sun, J. S., Garestier, T., and Helene, C. (2000) Recognition and cleavage of DNA by rebeccamycinor benzopyridoquinoxaline conjugated of triple helix-forming oligonucleotides, Bioorg. Med. Chem., 8, 777–784.

    Article  CAS  PubMed  Google Scholar 

  62. Arimondo, P. B., Riou, J. F., Mergny, J. L., Tazi, J., Sun, J. S., Garestier, T., and Helene, C. (2000) Interaction of human DNA topoisomerase I with G-quartet structures, Nucleic Acids Res., 28, 4832–4838.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Dolinnaya.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 8, pp. 1224–1239.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-341, March 29, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogloblina, A.M., Bannikova, V.A., Khristich, A.N. et al. Parallel G-quadruplexes formed by guanine-rich microsatellite repeats inhibit human topoisomerase I. Biochemistry Moscow 80, 1026–1038 (2015). https://doi.org/10.1134/S0006297915080088

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915080088

Key words

Navigation