Skip to main content
Log in

Supramolecular organization of Hfq-like proteins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Bacterial Hfq proteins are structural homologs of archaeal and eukaryotic Sm/Lsm proteins, which are characterized by a 5-stranded β-sheet and an N-terminal α-helix. Previously, it was shown that archaeal Lsm proteins (SmAP) could produce long fibrils spontaneously, in contrast to the Hfq from Escherichia coli that could form similar fibrils only after special treatment. The organization of these fibrils is significantly different, but the reason for the dissimilarity has not been found. In the present work, we studied the process of fibril formation by bacterial protein Hfq from Pseudomonas aeruginosa and archaeal protein SmAP from Methanococcus jannaschii. Both proteins have high homology with E. coli Hfq. We found that Hfq from P. aeruginosa could form fibrils after substitutions in the conserved Sm2 motif only. SmAP from M. jannaschii, like other archaeal Lsm proteins, form fibrils spontaneously. Despite differences in the fibril formation conditions, the architecture of both was similar to that described for E. coli Hfq. Therefore, universal nature of fibril architecture formed by Hfq proteins is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vogel, J., and Luisi, B. F. (2011) Hfq and its constellation of RNA, Nat. Rev. Microbiol., 9, 578–589.

    Article  CAS  PubMed  Google Scholar 

  2. Valentin-Hansen, P., and Eriksen, M. (2004) Micro-review: the bacterial Sm-like protein Hfq: a key player in RNA transactions, Mol. Microbiol., 51, 1525–1533.

    Article  CAS  PubMed  Google Scholar 

  3. Brennan, R. G., and Link, T. M. (2007) Hfq structure, function and ligand binding, Curr. Opin. Microbiol., 10, 125–133.

    Article  CAS  PubMed  Google Scholar 

  4. Beggs, J. D. (2005) Lsm proteins and RNA processing, Biochem. Soc. Trans., 33, 433–438.

    Article  CAS  PubMed  Google Scholar 

  5. Spiller, M. P., Boon, K.-L., Reijns, M. M., and Beggs, J. D. (2007) The Lsm2–8 complex determines nuclear localization of the spliceosomal U6 snRNA, Nucleic Acids Res., 35, 923–929.

    Article  PubMed Central  CAS  Google Scholar 

  6. Mura, C., Randolph, P. S., Patterson, J., and Cozen, A. E. (2013) A structural and evolutionary perspective on Sm function archaeal and eukaryotic homologs of Hfq, RNA Biol., 10, 636–651.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fischer, S., Benz, J., Spath, B., Maier, L.-K., Straub, J., Granzow, M., Raabe, M., Urlaub, H., Hoffmann, J., Brutschy, B., Allers, T., Soppa, J., and Marchfelder, A. (2010) The archaeal Lsm protein binds to small RNAs, J. Biol. Chem., 285, 34429–34438.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Murina, V. N., and Nikulin, A. D. (2011) RNA-binding Sm-like proteins of bacteria and archaea: similarity and difference in structure and function, Biochemistry (Moscow), 76, 1434–1449.

    Google Scholar 

  9. Khusial, P., Plaag, R., and Zieve, G. W. (2005) LSm proteins form heptameric rings that bind to RNA via repeating motifs, Trends Biochem. Sci., 30, 522–528.

    Article  CAS  PubMed  Google Scholar 

  10. Robinson, K. E., Orans, J., Kovach, A. R., Link, T. M., and Brennan, R. G. (2014) Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching, Nucleic Acids Res., 42, 2736–2749.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sauter, C. (2003) Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli, Nucleic Acids Res., 31, 4091–4098.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Salgado-Garrido, J., Bragado-Nilsson, E., Kandels-Lewis, S., and Seraphin, B. (1999) Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin, EMBO J., 18, 3451–3462.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nikulin, A., Stolboushkina, E., Perederina, A., Vassilieva, I., Blaesi, U., Moll, I., Kachalova, G., Yokoyama, S., Vassylyev, D., Garber, M., and Nikonov, S. (2005) Structure of Pseudomonas aeruginosa Hfq protein, Acta Crystallogr. D. Biol. Crystallogr., 61, 141–146.

    Article  PubMed  Google Scholar 

  14. Moskaleva, O., Melnik, B., Gabdulkhakov, A., Garber, M., Nikonov, S., Stolboushkina, E., and Nikulin, A. (2010) The structures of mutant forms of Hfq from Pseudomonas aeruginosa reveal the importance of the conserved His57 for the protein hexamer organization, Acta Crystallogr. F, 66, 760–764.

    Article  CAS  Google Scholar 

  15. Murina, V. N., Melnik, B. S., Filimonov, V. V., Uhlein, M., Weiss, M. S., Muller, U., and Nikulin, A. D. (2014) Effect of conserved intersubunit amino acid substitutions on Hfq protein structure and stability, Biochemistry (Moscow), 79, 469–477.

    Article  CAS  Google Scholar 

  16. Mura, C., Kozhukhovsky, A., Gingery, M., and Phillips, M. (2003) The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs), Protein Sci., 12, 832–847.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Arluison, V., Mura, C., Guzman, M. R., Liquier, J., Pellegrini, O., Gingery, M., Regnier, P., and Marco, S. (2006) Three-dimensional structures of fibrillar Sm proteins: Hfq and other Sm-like proteins, J. Mol. Biol., 356, 86–96.

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen, J. S., Boggild, A., Andersen, C. B. F., Nielsen, G., Boysen, A., Brodersen, D. E., and Valentin-Hansen, P. (2007) An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii, RNA, 13, 2213–2223.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Calderone, T. L., Stevens, R. D., and Oas, T. G. (1996) High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli, J. Mol. Biol., 262, 407–412.

    Article  CAS  PubMed  Google Scholar 

  20. Brinkmann, U., Mattes, R. E., and Buckel, P. (1989) High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product, Gene, 85, 109–114.

    Article  CAS  PubMed  Google Scholar 

  21. Guryanov, S. G., Selivanova, O. M., Nikulin, A. D., Enin, G. A., Melnik, B. S., Kretov, D. A., Serdyuk, I. N., and Ovchinnikov, L. P. (2012) Formation of amyloid-like fibrils by Y-box binding protein 1 (YB-1) is mediated by its cold shock domain and modulated by disordered terminal domains, PLoS One, 7, e36969.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Beznosov, S. N., Pyatibratov, M. G., and Fedorov, O. V. (2009) Archaeal flagellas as new nanomaterial creation matrixes, Russ. Nanotechnol., 4, 94–98.

    Article  Google Scholar 

  23. Beznosov, S. N., Pyatibratov, M. G., Fedorov, O. V., Kulova, T. L., and Skundin, A. M. (2011) Electrochemical characteristics of nanostructured material based on modified flagella of halophilic archaea Halobacterium salinarum for the negative electrode of lithium-ion battery, Russ. Nanotechnol., 6, 43–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Murina.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 4, pp. 517–526.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-297, February 22, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murina, V.N., Selivanova, O.M., Mikhaylina, A.O. et al. Supramolecular organization of Hfq-like proteins. Biochemistry Moscow 80, 441–448 (2015). https://doi.org/10.1134/S0006297915040070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915040070

Key words

Navigation