Skip to main content
Log in

pH Might play a role in regulating the function of paired amphipathic helices domains of human Sin3B by altering structure and thermodynamic stability

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Human Sin3B (hSin3B), a transcription regulator, is a scaffold protein that binds to different transcription factors and regulates transcription. It consists of six conserved domains that include four paired amphipathic helices (PAH 1–4), histone deacetylase interaction domain (HID), and highly conserved region (HCR). Interestingly, the PAH domains of hSin3B are significantly homologous to each other, yet each one interacts with a specific set of unique transcription factors. Though various partners interacting with hSin3B PAH domains have been characterized, there is no structural information available on the individual PAH domains of hSin3B. Here we characterize the structure and stability of different PAH domains of hSin3B at both nuclear and physiological pH values by using different optical probes. We found that the native state structure and stability of different PAH domains are different at nuclear pH where hSin3B performs its biological function. We also found that PAH2 and PAH3 behave differently at both nuclear and physiological pH in terms of native state structure and thermodynamic stability, while the structural identity of PAH1 remains unaltered at both pH values. The study indicates that the structural heterogeneity of different PAH domains might be responsible for having a unique set of interacting transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HCR:

highly conserved region

HID:

histone deacetylase interaction domain

PAH:

paired amphipathic helices domain

References

  1. Grzenda, A., Lomberk, G., Zhang, J.-S., and Urrutia, R. (2009) Sin3: master scaffold and transcriptional corepressor, Biochim. Biophys. Acta (BBA)-Gene Regul. Mechanisms, 1789, 443–450.

    Article  CAS  Google Scholar 

  2. Kadamb, R., Mittal, S., Bansal, N., Batra, H., and Saluja, D. (2013) Sin3: insight into its transcription regulatory functions, Europ. J. Cell Biol., 92, 237–246.

    Article  CAS  PubMed  Google Scholar 

  3. McDonel, P., Costello, I., and Hendrich, B. (2009) Keeping things quiet: roles of NuRD and Sin3 co-repressor complexes during mammalian development, Int. J. Biochem. Cell Biol., 41, 108–116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L., and Ayer, D. E. (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A, Cell, 89, 341–347.

    Article  CAS  Google Scholar 

  5. Le Guezennec, X., Vermeulen, M., and Stunnenberg, H. G. (2006) Molecular characterization of Sin3 PAH-domain interactor specificity and identification of PAH partners, Nucleic Acids Res., 34, 3929–3937.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sahu, S. C., Swanson, K. A., Kang, R. S., Huang, K., Brubaker, K., Ratcliff, K., and Radhakrishnan, I. (2008) Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor, J. Mol. Biol., 375, 1444–1456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ayer, D. E., Lawrence, Q. A., and Eisenman, R. N. (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3, Cell, 80, 767–776.

    Article  CAS  Google Scholar 

  8. Yang, Q., Kong, Y., Rothermel, B., Garry, D. J., Bassel-Duby, R., and Williams, R. S. (2000) The winged-helix/forkhead protein myocyte nuclear factor beta (MNF-beta) forms a co-repressor complex with mammalian sin3B, Biochem. J., 345, 335–343.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Alland, L., Muhle, R., Hou, H., Potes, J., Chin, L., Schreiber-Agus, N., and DePinho, R. A. (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression, Nature, 387, 49–55.

    Article  CAS  PubMed  Google Scholar 

  10. Rayman, J. B., Takahashi, Y., Indjeian, V. B., Dannenberg, J.-H., Catchpole, S., Watson, R. J., te Riele, H., and Dynlacht, B. D. (2002) E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex, Genes Devel., 16, 933–947.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Spronk, C. A. E. M., Tessari, M., Kaan, A. M., Jansen, J. F. A., Vermeulen, M., Stunnenberg, H. G., and Vuister, G. W. (2000) The Mad1-Sin3B interaction involves a novel helical fold, Nature Struct. Mol. Biol., 7, 1100–1104.

    Article  CAS  Google Scholar 

  12. Olsson, A., Olsson, I., and Dhanda, R. S. (2008) Transcriptional repression by leukemia-associated ETO family members can be independent of oligomerization and coexpressed hSIN3B and N-CoR, Biochim. Biophys. Acta (BBA)-Gene Regul. Mechanisms, 1779, 590–598.

    Article  CAS  Google Scholar 

  13. Silverstein, R. A., and Ekwall, K. (2005) Sin3: a flexible regulator of global gene expression and genome stability, Curr. Genet., 47, 1–17.

    Article  CAS  PubMed  Google Scholar 

  14. Van Ingen, H., Baltussen, M. A. H., Aelen, J., and Vuister, G. W. (2006) Role of structural and dynamical plasticity in Sin3: the free PAH2 domain is a folded module in mSin3B, J. Mol. Biol., 358, 485–497.

    Article  PubMed  Google Scholar 

  15. Swanson, K. A., Knoepfler, P. S., Huang, K., Kang, R. S., Cowley, S. M., Laherty, C. D., Eisenman, R. N., and Radhakrishnan, I. (2004) HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations, Nature Struct. Mol. Biol., 11, 738–746.

    Article  CAS  Google Scholar 

  16. Kumar, G. S., Xie, T., Zhang, Y., and Radhakrishnan, I. (2011) Solution structure of the mSin3A PAH2-Pf1 SID1 complex: a Mad1/Mxd1-like interaction disrupted by MRG15 in the Rpd3S/Sin3S complex, J. Mol. Biol., 408, 987–1000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Van Ingen, H., Lasonder, E., Jansen, J. F. A., Kaan, A. M., Spronk, C. A. E. M., Stunnenberg, H. G., and Vuister, G. W. (2004) Extension of the binding motif of the Sin3 interacting domain of the Mad family proteins, Biochemistry, 43, 46–54.

    Article  PubMed  Google Scholar 

  18. Saluta, M., and Bell, P. A. (1998) Troubleshooting GST fusion protein expression in E. coli, Life Sci. News, 1.

  19. Marty, A., Boiret, M., and Deumie, M. (1986) How to illustrate ligand-protein binding in a class experiment: an elementary fluorescent assay, J. Chem. Ed., 63, 365.

    Article  CAS  Google Scholar 

  20. Lakowicz, J. R. (2007) Principles of Fluorescence Spectroscopy, Springer.

    Google Scholar 

  21. Szabo, A. G., Lynn, K., Krajcarski, D., and Rayner, D. M. (1979) Tyrosine fluorescence at 345 nm in proteins lacking tryptophan, J. Luminesc., 18, 582–586.

    Article  Google Scholar 

  22. Szabo, A. G., Lynn, K. R., Krajcarski, D. T., and Rayner, D. M. (1978) Tyrosinate fluorescence maxima at 345 nm in proteins lacking tryptophan at pH 7, FEBS Lett., 94, 249–252.

    Article  CAS  PubMed  Google Scholar 

  23. Ruan, K., Li, J., Liang, R., Xu, C., Yu, Y., Lange, R., and Balny, C. (2002) A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II. Biochem. Biophys. Res. Commun., 293, 593–597.

    Article  CAS  PubMed  Google Scholar 

  24. Becktel, W. J., and Schellman, J. A. (1987) Protein stability curves, Biopolymers, 26, 1859–1877.

    Article  CAS  PubMed  Google Scholar 

  25. Barnes, V. L., Strunk, B. S., Lee, I., Huttemann, M., and Pile, L. A. (2010) Loss of the SIN3 transcriptional core-pressor results in aberrant mitochondrial function, BMC Biochem., 11, 26.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Backues, S. K., Lynch-Day, M. A., and Klionsky, D. J. (2012) The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size, Autophagy, 8, 1835–1836.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kong, Q., Zeng, W., Wu, J., Hu, W., Li, C., and Mao, B. (2010) RNF220, an E3 ubiquitin ligase that targets Sin3B for ubiquitination, Biochem. Biophys. Res. Commun., 393, 708–713.

    Article  CAS  PubMed  Google Scholar 

  28. Khochbin, S., Verdel, A., Lemercier, C., and Seigneurin-Berny, D. (2001) Functional significance of histone deacetylase diversity, Curr. Opin. Genet. Devel., 11, 162–166.

    Article  CAS  Google Scholar 

  29. Vega, A. V., Avila, G., and Matthews, G. (2013) Interaction between the transcriptional corepressor Sin3B and voltage-gated sodium channels modulates functional channel expression, Sci. Rep., 3.

  30. Cunningham, J., Estrella, V., Lloyd, M., Gillies, R., Frieden, B. R., and Gatenby, R. (2012) Intracellular electric field and pH optimize protein localization and movement, PloS One, 7, e36894.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nomura, M., Uda-Tochio, H., Murai, K., Mori, N., and Nishimura, Y. (2005) The neural repressor NRSF/REST binds the PAH1 domain of the Sin3 corepressor by using its distinct short hydrophobic helix, J. Mol. Biol., 354, 903–915.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laishram Rajendrakumar Singh.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 4, pp. 497–507.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-235, February 15, 2015.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, T., Ali, M., Saluja, D. et al. pH Might play a role in regulating the function of paired amphipathic helices domains of human Sin3B by altering structure and thermodynamic stability. Biochemistry Moscow 80, 424–432 (2015). https://doi.org/10.1134/S0006297915040057

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915040057

Key words

Navigation