Skip to main content

Advertisement

Log in

Features of hydrolysis of specific and nonspecific globular proteins and oligopeptides by antibodies against viral integrase from blood of HIV-infected patients

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It was shown previously that, as differentiated from canonical proteases, abzymes against myelin basic protein (MBP) from blood of patients with multiple sclerosis and systemic lupus erythematosus effectively cleaved only MBP, while antibodies (ABs) against integrase (IN) from blood of HIV-infected patients specifically hydrolyzed only IN. In this work, all sites of effective hydrolysis by anti-IN antibodies (IgG and IgM) of 25-mer oligopeptide (OP25) corresponding to MBP were identified using reversed-phase and thin-layer chromatographies and MALDI mass spectrometry. It was found that amino acid sequences of OP25 and other oligopeptides hydrolyzed by anti-MBP abzymes were partially homologous to some fragments of the full sequence of IN. Sequences of IN oligopeptides cleavable by anti-IN abzymes were homologous to some fragments of MBP, but anti-MBP abzymes could not effectively hydrolyze OPs corresponding to IN. The common features of the cleavage sites of OP25 and other oligopeptides hydrolyzed by anti-MBP and anti-IN abzymes were revealed. The literature data on hydrolysis of specific and nonspecific proteins and oligopeptides by abzymes against different protein antigens were analyzed. Overall, the literature data suggest that short OPs, including OP25, mainly interact with light chains of polyclonal ABs, which had lower affinity and specificity to the substrate than intact ABs. However, it seems that anti-IN ABs are the only one example of abzymes capable of hydrolyzing various oligopeptides with high efficiency (within some hours but not days). Possible reasons for the efficient hydrolysis of foreign oligopeptides by anti-IN abzymes from HIV-infected patients are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AB:

antibody

FM:

final reaction mixture

HIV:

human immunodeficiency virus

HSA:

human serum albumin

IAS:

immunogenic amino acid sequence

IgGmix and IgMmix :

mixtures of individual antibodies from blood of HIV-infected patients

IN:

HIV integrase

MBP:

myelin basic protein

MCA:

4-methylcoumaryl-7-amine

MS:

multiple sclerosis

OP:

oligopeptide

RPC:

reverse-phase chromatography

SLE:

systemic lupus erythematosus

X:

fluorescent residue 6-O-(carboxymethyl)fluorescein ethyl ester

References

  1. Keinan, E. (ed.) (2005) Catalytic Antibodies, Wiley-VCH Verlag GmbH and Co. KgaA, Weinheim, Germany.

    Google Scholar 

  2. Nevinsky, G. A., and Buneva, V. N. (2002) Human catalytic RNA- and DNA-hydrolyzing antibodies, J. Immunol. Methods, 269, 235–249.

    Article  CAS  PubMed  Google Scholar 

  3. Nevinsky, G. A., and Buneva, V. N. (2005) Natural catalytic antibodies — abzymes, in Catalytic Antibodies (Keinan, E., ed.) VCH-Wiley, Weinheim, Germany, pp. 503–567.

    Google Scholar 

  4. Nevinsky, G. A. (2010) Natural catalytic antibodies in norm and in autoimmune diseases, in Autoimmune Diseases: Symptoms, Diagnosis and Treatment (Brenner, K. J., ed.) Nova Science Publishers, Inc., USA.

    Google Scholar 

  5. Nevinsky, G. A. (2011) Natural catalytic antibodies in norm and in HIV-infected patients, in Understanding HIV/AIDS Management and Care — Pandemic Approaches the 21st Century (Kasenga, F. H., ed.) InTech, Rijeka, Croatia, pp. 151–192.

    Google Scholar 

  6. Nevinsky, G. A., and Buneva, V. N. (2012) Autoantibodies and natural catalytic antibodies in health, multiple sclerosis, and some other diseases, Adv. Neuroimmune Biol., 3, 157–182.

    Google Scholar 

  7. Fauci, A. S., Braunwald, E., Kasper, D. L., Hauser, S. L., Longo, D. L., and Jameson, J. L. (2008) Harrison’s Principles of Internal Medicine, 7th Edn., McGraw-Hill Professional, New York.

    Google Scholar 

  8. Katz, A. R., and Skalka, A. M. (1994) HIV-1 integrase: structural organization, conformational changes, and catalysis, Ann. Rev. Biochem., 63, 133–173.

    Article  CAS  PubMed  Google Scholar 

  9. Litvak, S. (1996) Retroviral reverse transcriptases, in Molecular Biology Intelligency Unit Series (Landes, R., ed.) Chapman and Hall/Springer Verlag, Heidelberg.

    Google Scholar 

  10. Skalka, A. M., and Goff, S. P. (1993) Reverse Transcriptase, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  11. Asante-Appiah, E., and Skalka, A. M. (1999) HIV-1 integrase: structural organization, conformational changes, and catalysis, Adv. Virus Res., 52, 351–369.

    Article  CAS  PubMed  Google Scholar 

  12. Verkoczy, L., and Diaz, M. (2014) Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination, Curr. Opin. HIV AIDS, 9, 224–234.

    Article  CAS  PubMed  Google Scholar 

  13. Zandman-Goddard, G., and Shoenfeld, Y. (2002) HIV and autoimmunity, Autoimmun. Rev., 1, 329–337.

    Article  CAS  PubMed  Google Scholar 

  14. Gololobov, G. V., Mikhalap, S. V., Starov, A. V., Kolesnikov, A. F., and Gabibov, A. G. (1994) DNA-protein complexes. Natural targets for DNA-hydrolyzing antibodies, Appl. Biochem. Biotechnol., 47, 305–314.

    Article  CAS  PubMed  Google Scholar 

  15. Odintsova, E. S., Kharitonova, M. A., Baranovskii, A. G., Sizyakina, L. P., Buneva, V. N., and Nevinsky, G. A. (2006) DNA-hydrolyzing IgG antibodies from the blood of patients with acquired immune deficiency syndrome, Mol. Biol., 40, 857–864.

    Article  CAS  Google Scholar 

  16. Odintsova, E. S., Kharitonova, M. A., Baranovskii, A. G., Sizyakina, L. P., Buneva, V. N., and Nevinsky, G. A. (2006) Proteolytic activity of IgG antibodies from blood of acquired immunodeficiency syndrome patients, Biochemistry (Moscow), 71, 251–261.

    Article  CAS  Google Scholar 

  17. Baranova, S. V., Buneva, V. N., Kharitonova, M. A., Sizyakina, L. P., Calmels, C., Parissi, V., Andreola, M. L., Buneva, V. N., Zakharova, O. D., and Nevinsky, G. A. (2010) HIV-1 integrase-hydrolyzing IgM antibodies from sera of HIV-infected patients, Int. Immunol., 22, 671–680.

    Article  CAS  PubMed  Google Scholar 

  18. Baranova, S. V., Buneva, V. N., Kharitonova, M. A., Sizyakina, L. P., Calmels, C., Andreola, M. L., Parissi, V., and Nevinsky, G. A. (2009) HIV-1 integrase-hydrolyzing antibodies from sera of HIV-infected patients, Biochimie, 91, 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  19. Odintsova, E. S., Baranova, S. V., Dmitrenok, P. S., Rasskazov, V. A., Calmels, C., Parissi, V., Andreola, M. L., Buneva, V. N., Zakharova, O. D., and Nevinsky, G. A. (2011) Antibodies to HIV integrase catalyze site-specific degradation of their antigen, Int. Immunol., 23, 601–612.

    Article  CAS  PubMed  Google Scholar 

  20. Odintsova, E. S., Dmitrenok, P. S., Buneva, V. N., and Nevinsky, G. A. (2013) Specific anti-integrase abzymes from HIV-infected patients: a comparison of the cleavage sites of intact globular HIV integrase and two 20-mer oligopeptides corresponding to its antigenic determinants, J. Mol. Recognit., 26, 121–135.

    Article  CAS  PubMed  Google Scholar 

  21. O’Connor, K. C., Bar-Or, A., and Hafler, D. A. (2001) Neuroimmunology of multiple sclerosis, J. Clin. Immunol., 21, 81–92.

    Article  PubMed  Google Scholar 

  22. Archelos, J. J., Storch, M. K., and Hartung, H. P. (2000) The role of B cells and autoantibodies in multiple sclerosis, Ann. Neurol., 47, 694–706.

    Article  CAS  PubMed  Google Scholar 

  23. Hemmer, B., Archelos, J. J., and Hartung, H. P. (2002) New concepts in the immunopathogenesis of multiple sclerosis, Nat. Rev. Neurosci., 3, 291–301.

    Article  CAS  PubMed  Google Scholar 

  24. Polosukhina, D. I., Kanyshkova, T. G., Doronin, B. M., Tyshkevich, O. B., Buneva, V. N., Boiko, A. N., Gusev, E. I., Favorova, O. O., and Nevinsky, G. A. (2004) Hydrolysis of myelin basic protein by polyclonal catalytic IgGs from the sera of patients with multiple sclerosis, J. Cell. Mol. Med., 8, 359–368.

    Article  CAS  PubMed  Google Scholar 

  25. Polosukhina, D. I., Buneva, V. N., Doronin, B. M., Tyshkevich, O. B., Boiko, A. N., Gusev, E. I., Favorova, O. O., and Nevinsky, G. A. (2005) Hydrolysis of myelin basic protein by IgM and IgA antibodies from the sera of patients with multiple sclerosis, Med. Sci. Monit., 11, BR266–BR272.

    CAS  PubMed  Google Scholar 

  26. Polosukhina, D. I., Kanyshkova, T. G., Doronin, B. M., Tyshkevich, O. B., Buneva, V. N., Boiko, A. N., Gusev, E. I., Nevinsky, G. A., and Favorova, O. O. (2006) Metal-dependent hydrolysis of myelin basic protein by IgGs from the sera of patients with multiple sclerosis, Immunol. Lett., 103, 75–81.

    Article  CAS  PubMed  Google Scholar 

  27. Ponomarenko, N. A., Durova, O. M., Vorobiev, I. I., Belogurov, A. A., Kurkova, I. N., Petrenko, A. G., Telegin, G. B., Suchkov, S. V., Kiselev, S. L., Lagarkova, M. A., Govorun, V. M., Serebryakova, M. V., Avalle, B., Tornatore, P., Karavanov, A., Morse, H. C. 3rd, Thomas, D., Friboulet, A., and Gabibov, A. G. (2006) Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen, Proc. Natl. Acad. Sci. USA, 103, 281–286.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hhachn, B. Ch. (1996) Systemic lupus erythematosus, in Internal Diseases (Braunvald, E. E., Isselbakher, K. D., Petersdorf, R. G., Wilson, D. D., Martin. D. B., and Fauchi, A. S., eds.) [Russian translation], Meditsina, Moscow.

    Google Scholar 

  29. Bezuglova, A. M., Konenkova, L. P., Doronin, B. M., Buneva, V. N., and Nevinsky, G. A. (2011) Affinity and catalytic heterogeneity and metal-dependence of polyclonal myelin basic protein-hydrolyzing IgGs from sera of patients with systemic lupus erythematosus, J. Mol. Recognit., 24, 960–974.

    Article  PubMed  Google Scholar 

  30. Bezuglova, A. M., Dmitrenok, P. S., Konenkova, L. P., Buneva, V. N., and Nevinsky, G. A. (2012) Multiple sites of the cleavage of 17- and 19-mer encephalitogenic oligopeptides corresponding to human myelin basic protein (MBP) by specific anti-MBP antibodies from patients with systemic lupus erythematosus, Peptides, 37, 69–78.

    Article  CAS  PubMed  Google Scholar 

  31. Timofeeva, A. M., Dmitrenok, P. S., Konenkova, L. P., Buneva, V. N., and Nevinsky G. A. (2013) Multiple sites of the cleavage of 21- and 25-mer encephalitogenic oligopeptides corresponding to human myelin basic protein (MBP) by specific anti-MBP antibodies from patients with systemic lupus erythematosus, PLoS One, 8, e51600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bezuglova, A. M., Konenkova, L. P., Buneva, V. N., and Nevinsky, G. A. (2012) IgGs containing light chains of the λ- and κ-type and of all subclasses (IgG1-IgG4) from the sera of patients with systemic lupus erythematosus hydrolyze myelin basic protein, Int. Immunol., 12, 759–770.

    Article  Google Scholar 

  33. Odintsova, E. S., Dmitrenok, P. S., Timofeeva, A. M., Buneva, V. N., and Nevinsky, G. A. (2014) Why specific anti-integrase antibodies from HIV-infected patients can efficiently hydrolyze 21-mer oligopeptide corresponding to antigenic determinant of human myelin basic protein, J. Mol. Recognit., 27, 32–45.

    Article  CAS  PubMed  Google Scholar 

  34. Odintsova, E. S., Baranova, S. V., Dmitrenok, P. S., Calmels, C., Parissi, V., Andreola, M. L., Buneva, V. N., and Nevinsky, G. A. (2012) Anti-integrase abzymes from the sera of HIV-infected patients specifically hydrolyze integrase but nonspecifically cleave short oligopeptides, J. Mol. Recognit., 25, 193–207.

    Article  CAS  PubMed  Google Scholar 

  35. Caumont, A., Jamieson, G., de Soultrait, V., Parissi, V., Fournier, M., Zakharova, O. D., Bayandin, R., Litvak, S., Tarrago-Litvak, L., and Nevinsky, G. A. (1999) High affinity interaction of HIV-1 integrase with specific and nonspecific single-stranded short oligonucleotides, FEBS Lett., 455, 154–158.

    Article  CAS  PubMed  Google Scholar 

  36. Huang, X., and Miller, W. (1991) Local alignment of two-base encoded DNA sequence, Adv. Appl. Math., 12, 337–357.

    Article  Google Scholar 

  37. Paul, S., Li, L., Kalaga, R., O’Dell, J., Dannenbring, R. E., Swindells, S., Hinrichs, S., Cauturegli, P., and Rose, N. R. (1997) Characterization of thyroglobulin-directed and polyreactive catalytic antibodies in autoimmune disease, J. Immunol., 159, 1530–1536.

    CAS  PubMed  Google Scholar 

  38. Kalaga, R., Li, L., O’Dell, J. R., and Paul, S. (1995) Unexpected presence of polyreactive catalytic antibodies in IgG from unimmunized donors and decreased levels in rheumatoid arthritis, J. Immunol., 155, 2695–2702.

    CAS  PubMed  Google Scholar 

  39. Paul, S., Li, L., Kalaga, R., Wilkins-Stevens, P., Stevens, F. J., and Solomon, A. (1995) Natural catalytic antibodies: peptide-hydrolyzing activities of Bence-Jones proteins and VL fragment, J. Biol. Chem., 270, 15257–15261.

    Article  CAS  PubMed  Google Scholar 

  40. Yi, J., Arthur, J. W., Dunbrack, R. L., and Skalka, A. M. (2000) An inhibitory monoclonal antibody binds at the turn of the helix-turn-helix motif in the N-terminal domain of HIV-1 integrase, J. Biol. Chem., 275, 38739–38748.

    Article  CAS  PubMed  Google Scholar 

  41. Bizub-Bender, D., Kulkosky, J., and Skalka, A. M. (1994) Monoclonal antibodies against HIV type 1 integrase: clues to molecular structure, AIDS Res. Hum. Retroviruses, 10, 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  42. Nilsen, B. M., Haugan, I. R., Berg, K., Olsen, L., Brown, P. O., and Helland, D. E. (1996) Monoclonal antibodies against human immunodeficiency virus type 1 integrase: epitope mapping and differential effects on integrase activities in vitro, J. Virol., 70, 1580–1587.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Baranovskii, A. G., Buneva, V. N., Doronin, B. M., and Nevinsky, G. A. (2008) Immunoglobulins from blood of patients with multiple sclerosis are catalytically heterogeneous nucleases, Ros. Immunol. Zh., 2, 405–419.

    Google Scholar 

  44. Andrievskaya, O. A., Buneva, V. N., Baranovskii, A. G., Gal’vita, A. V., Benzo, E. S., Naumov, V. A., and Nevinsky, G. A. (2002) Catalytic diversity of polyclonal RNA-hydrolyzing IgG antibodies from the sera of patients with systemic lupus erythematosus, Immunol. Lett., 81, 191–198.

    Article  CAS  PubMed  Google Scholar 

  45. Galvita, A. V., Baranovskii, A. G., Kuznetsova, I. A., Vinshu, N. V., Galenok, V. A., Buneva, V. N., and Nevinsky, G. A. (2007) Peculiarities of DNA hydrolysis by antibodies from blood of patients with pancreatic diabetes, Rus. J. Immunol., 1, 116–131.

    Google Scholar 

  46. Parkhomenko, T. A., Buneva, V. N., Tyshkevich, O. B., Generalov, I. I., Doronin, B. M., and Nevinsky, G. A. (2010) DNA-hydrolyzing activity of IgG antibodies from the sera of patients with tick-borne encephalitis, Biochimie, 92, 545–554.

    Article  CAS  PubMed  Google Scholar 

  47. Parkhomenko, T. A., Odintsova, E. S., Buneva, V. N., Kunder, E. V., Zhyltsov, I. V., Senkovich, S. A., Generalov, I. I., and Nevinsky, G. A. (2009) DNA-hydrolyzing activity of IgG antibodies from the sera of patients with diseases caused by different bacterial infections, J. Cell. Mol. Med., 13, 2875–2887.

    Article  CAS  PubMed  Google Scholar 

  48. Kanyshkova, T. G., Semenov, D. V., Buneva, V. N., and Nevinsky, G. A. (1999) Human milk lactoferrin binds two molecules of DNA with different affinities, FEBS Lett., 451, 235–237.

    Article  CAS  PubMed  Google Scholar 

  49. Kuznetsova, I. A., Orlovskaya, I. A., Buneva, V. N., and Nevinsky, G. A. (2007) Activation of DNA-hydrolyzing antibodies from the sera of autoimmune-prone MRLlpr/lpr mice by different metal ions, Biochim. Biophys. Acta, 1774, 884–896.

    Article  CAS  PubMed  Google Scholar 

  50. Andryushkova, A. A., Kuznetsova, I. A., Orlovskaya, I. A., Buneva, V. N., and Nevinsky, G. A. (2006) Antibodies with amylase activity from the sera of autoimmune-prone MRL/MpJ-lpr mice, FEBS Lett., 580, 5089–5095.

    Article  CAS  PubMed  Google Scholar 

  51. Andryushkova, A. A., Kuznetsova, I. A., Orlovskaya, I. A., Buneva, V. N., and Nevinsky, G. A. (2009) Nucleotidehydrolyzing antibodies from the sera of autoimmune-prone MRL-lpr/lpr mice, Int. Immunol., 21, 935–945.

    Article  CAS  PubMed  Google Scholar 

  52. Botvinovskaya, A. V., Kostrikina, I. A., Buneva, V. N., and Nevinsky, G. A. (2013) Systemic lupus erythematosus: molecular cloning of several recombinant DNase monoclonal kappa light chains with different catalytic properties, J. Mol. Recognit., 26, 450–460.

    Article  CAS  PubMed  Google Scholar 

  53. Kostrikina, I. A., Buneva, V. N., and Nevinsky, G. A. (2014) Systemic lupus erythematosus: molecular cloning of fourteen recombinant DNase monoclonal kappa light chains with different catalytic properties, Biochim. Biophys. Acta, 1840, 1725–1737.

    Article  CAS  PubMed  Google Scholar 

  54. Sun, M., Gao, Q. S., Kirnarskiy, L., Rees, A., and Paul, S. (1997) Cleavage specificity of a proteolytic antibody light chain and effects of the heavy chain variable domain, J. Mol. Biol., 271, 374–385.

    Article  CAS  PubMed  Google Scholar 

  55. Thiagarajan, P., Dannenbring, R., Matsuura, K., Tramontano, A., Gololobov, G., and Paul, S. (2000) Monoclonal antibody light chain with prothrombinase activity, Biochemistry, 39, 6459–6465.

    Article  CAS  PubMed  Google Scholar 

  56. Rangan, S. K., Liu, R., Brune, D., Plaque, S., Paul, S., and Sierks, M. R. (2003) Degradation of beta-amyloid by proteolytic antibody light chains, Biochemistry, 42, 14328–14334.

    Article  CAS  PubMed  Google Scholar 

  57. Mitsuda, Y., Hifimi, E., Tsuruhata, R., Fujinami, H., Yamamoto, N., and Uda, T. (2004) Catalytic antibody light chain capable of cleaving a chemokine receptor CCR-5 peptide with a high reaction rate constant, Biotechnol. Bioeng., 86, 217–225.

    Article  CAS  PubMed  Google Scholar 

  58. Nidhiyama, Y., Karle, S., Planque, S., Taguchi, H., and Paul, S. (2007) Antibodies to the superantigenic site of HIV-1 gp120, hydrolytic and binding activities of the light chain subunit, Mol. Immunol., 44, 2707–2718.

    Article  Google Scholar 

  59. Taguchi, H., Keck, Z., Foung, S. K., Paul, S., and Nishiyama, Y. (2004) Antibody light chain-catalyzed hydrolysis of a hepatitis C virus peptide, Bioorg. Med. Chem. Lett., 14, 4529–4532.

    Article  CAS  PubMed  Google Scholar 

  60. Hifumi, E., Morihara, F., Hatiuchi, K., Okuda, T., Nishisono, A., and Uda, T. (2008) Catalytic features and eradication ability of antibody light-chain UA15-L against Helicobacter pylori, J. Biol. Chem., 283, 899–907.

    Article  CAS  PubMed  Google Scholar 

  61. Li, L., Paul, S., Tyutyulkova, S., Kazatchkine, M. D., and Kavery, S. (1995) Catalytic activity of anti-thyroglobulin antibodies, J. Immunol., 154, 3328–3332.

    CAS  PubMed  Google Scholar 

  62. Gao, Q. S., Sun, M., Tyutyulkova, S., Webster, D., Rees, A., Tramontano, A., Massey, R. J., and Paul, S. (1994) Molecular cloning of a proteolytic antibody light chain, J. Biol. Chem., 269, 32389–32393.

    CAS  PubMed  Google Scholar 

  63. Fersht, A. (1985) Enzyme Structure and Mechanism, 2nd Edn., W. H. Freeman, Co., N. Y.

    Google Scholar 

  64. Nevinsky, G. A. (2003) in Protein Structures: Kaleidoscope of Structural Properties and Functions (Uversky, V. N., ed.) Research Signpost, Kerala, pp. 133–222.

  65. Paul, S., Volle, D. J., Beach, C. M., Johnson, D. R., Powell, M. J., and Massey, R. J. (1989) Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody, Science, 244, 1158–1162.

    Article  CAS  PubMed  Google Scholar 

  66. Lacroix-Desmazes, S., Moreau, A., Sooryanarayana, Bonnemain, C., Stieltjes, N., Pashov, A., Sultan, Y., Hoebeke, J., Kazatchkine, M. D., and Kaveri, S. V. (1999) Catalytic activity of antibodies against factor VIII in patients with hemophilia A, Nat. Med., 5, 1044–1047.

    Article  CAS  PubMed  Google Scholar 

  67. Odintsova, E. S., Buneva, V. N., and Nevinsky, G. A. (2005) Casein-hydrolyzing activity of sIgA antibodies from human milk, J. Mol. Recognit., 18, 413–421.

    Article  CAS  PubMed  Google Scholar 

  68. Paul, S., Karle, S., Planque, S., Taguchi, H., Salas, M., Nishiyama, Y., Handy, B., Hunter, R., Edmundson, A., and Hanson, C. (2004) Naturally occurring proteolytic antibodies: selective immunoglobulin M-catalyzed hydrolysis of HIV gp120, J. Biol. Chem., 279, 39611–39619.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Nevinsky.

Additional information

Original Russian Text © E. S. Odintsova, P. S. Dmitrenok, S. V. Baranova, A. M. Timofeeva, V. N. Buneva, G. A. Nevinsky, 2015, published in Biokhimiya, 2015, Vol. 80, No. 2, pp. 224–248.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-187, January 25, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odintsova, E.S., Dmitrenok, P.S., Baranova, S.V. et al. Features of hydrolysis of specific and nonspecific globular proteins and oligopeptides by antibodies against viral integrase from blood of HIV-infected patients. Biochemistry Moscow 80, 180–201 (2015). https://doi.org/10.1134/S0006297915020054

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915020054

Key words

Navigation