Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 1, pp 50–60 | Cite as

Photosystem activity and state transitions of the photosynthetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool

  • Y. V. BolychevtsevaEmail author
  • F. I. Kuzminov
  • I. V. Elanskaya
  • M. Y. Gorbunov
  • N. V. Karapetyan
Article

Abstract

To better understand how photosystem (PS) activity is regulated during state transitions in cyanobacteria, we studied photosynthetic parameters of photosystem II (PSII) and photosystem I (PSI) in Synechocystis PCC 6803 wild type (WT) and its mutants deficient in oxidases (Ox) or succinate dehydrogenase (SDH). Dark-adapted Ox mutant, lacking the oxidation agents, is expected to have a reduced PQ pool, while in SDH mutant the PQ pool after dark adaptation will be more oxidized due to partial inhibition of the respiratory chain electron carriers. In this work, we tested the hypothesis that control of balance between linear and cyclic electron transport by the redox state of the PQ pool will affect PSII photosynthetic activity during state transition. We found that the PQ pool was reduced in Ox mutant, but oxidized in SDH mutant after prolonged dark adaptation, indicating different states of the photosynthetic apparatus in these mutants. Analysis of variable fluorescence and 77K fluorescence spectra revealed that the WT and SDH mutant were in State 1 after dark adaptation, while the Ox mutant was in State 2. State 2 was characterized by ∼1.5 time lower photochemical activity of PSII, as well as high rate of P700 reduction and the low level of P700 oxidation, indicating high activity of cyclic electron transfer around PSI. Illumination with continuous light 1 (440 nm) along with flashes of light 2 (620 nm) allowed oxidation of the PQ pool in the Ox mutant, thus promoting it to State 1, but it did not affect PSII activity in dark adapted WT and SDH mutant. State 1 in the Ox mutant was characterized by high variable fluorescence and P700+ levels typical for WT and the SDH mutant, indicating acceleration of linear electron transport. Thus, we show that PSII of cyanobacteria has a higher photosynthetic activity in State 1, while it is partially inactivated in State 2. This process is controlled by the redox state of PQ in cyanobacteria through enhancement/inhibition of electron transport on the acceptor side of PSII.

Key words

cyanobacteria mutants photosystem II NADP+ state transitions plastoquinone 

Abbreviations

CtaI, CtaII, and Cyd

terminal oxidases

cyt b6/f

complex of b 6 /f cytochromes

DCMU

dichlorophenyl-dimethyl urea

Fd

ferredoxin

FNR

ferredoxin:NADP-oxidoreductase

NAD(P+)/NAD(P)H

oxidized/reduced nicotine amide adenine dinucleotide (phosphate)

Ox

mutant deficient in terminal oxidases

PBS

phycobilisome

PQ

plastoquinone

PSII(I)

photosystem II(I)

QA/QA and QB/QB

primary and secondary quinone electron acceptors of PSII in oxidized/reduced states

SDH

mutant deficient in succinate dehydrogenase (succinate:quinol oxidoreductase)

WT

wild type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horton, P., Ruban, A. V., and Walters, R. G. (1996) Regulation of light harvesting in green plants, Ann. Rev. Plant Physiol. Plant Mol. Biol., 47, 655–684.CrossRefGoogle Scholar
  2. 2.
    Karapetyan N. V. (2007) Non-photochemical quenching of fluorescence in cyanobacteria, Biochemistry (Moscow), 72, 1127–1135.CrossRefGoogle Scholar
  3. 3.
    Bonaventura, C., and Myers, J. (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa, Biochim. Biophys. Acta, 189, 366–383.PubMedCrossRefGoogle Scholar
  4. 4.
    Murata, N. (1969) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum, Biochim. Biophys. Acta, 172, 242–251.PubMedCrossRefGoogle Scholar
  5. 5.
    Fork, D. C., and Satoh, K. (1983) State I–state II transitions in the thermophilic blue-green alga (cyanobacterium) Synechococcus lividus, Photochem. Photobiol., 37, 421–427.CrossRefGoogle Scholar
  6. 6.
    Allen J. F. (2003) State transitions—a question of balance, Science, 299, 1530–1532.PubMedCrossRefGoogle Scholar
  7. 7.
    Allen J. F., Bennett J., Steinback K. E., and Arntzen C. J. (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems, Nature, 291, 25–29.CrossRefGoogle Scholar
  8. 8.
    Mullineaux, C. W., and Allen, J. F. (1990) State 1–state 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between photosystems I and II, Photosynth. Res., 23, 297–311.PubMedCrossRefGoogle Scholar
  9. 9.
    Allen, J. F. (1992) Protein phosphorylation in regulation of photosynthesis, Biochim. Biophys. Acta, 1098, 275–335.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsinoremas, N. F., Hubbard, J. A. M., Evens, M. C. W., and Allen, J. F. (1989) P700 photooxidation in state 1 and state 2 in cyanobacteria upon flash illumination with phycobilin- and chlorophyll-absorbed light, FEBS Lett., 256, 106–110.CrossRefGoogle Scholar
  11. 11.
    Mullineaux, C. W. (1992) Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium, Biochim. Biophys. Acta, 1100, 285–292.CrossRefGoogle Scholar
  12. 12.
    Rakhimberdieva M. G., Boichenko V. A., Karapetyan N. V., and Stadnichuk I. N. (2001) Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis, Biochemistry, 40, 15780–15788.PubMedCrossRefGoogle Scholar
  13. 13.
    Melis, A., Mullineaux, C. W., and Allen, J. F. (1989) Acclimation of the photosynthetic apparatus to photosystem I or photosystem II light: evidence from quantum yield measurements and fluorescence spectroscopy of cyanobacterial cells, Z. Naturforsch., 44c, 109–118.Google Scholar
  14. 14.
    Mi, H., Endo, T., Schreiber, U., Ogawa, T., and Asada, K. (1992) Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 33, 1233–1237.Google Scholar
  15. 15.
    Howitt, C. A., Smith, G. D., and Day, D. A. (1993) Cyanide-insensitive oxygen uptake and pyridine nucleotide dehydrogenases in the cyanobacterium Anabaena PCC 7120, Biochim. Biophys. Acta, 1141, 313–320.CrossRefGoogle Scholar
  16. 16.
    Cooley, J. W., Howitt, C. A., and Vermaas, W. F. J. (2000) Succinate:quinol oxidoreductase in the cyanobacterium Synechocystis sp. strain PCC 6803: presence and function in metabolism and electron transport, J. Bacteriol., 182, 714–722.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Pils, D., and Schmetterer, G. (2001) Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803, FEMS Lett., 203, 217–222.CrossRefGoogle Scholar
  18. 18.
    Mullineaux, C. W., and Allen, J. F. (1986) The state 2 transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the plastoquinone pool, FEBS Lett., 205, 155–160.CrossRefGoogle Scholar
  19. 19.
    Mao, H.-B., Li, G.-F., Ruan, X., Wu, Q.-Yu, Gong, Y.-D., Zhang, X.-F., and Zhao, N.-M. (2002) The redox state of plastoquinone pool regulates state transitions via cytochrome b6 f complex in Synechocystis sp. PCC 6803, FEBS Lett., 519, 82–86.PubMedCrossRefGoogle Scholar
  20. 20.
    Mullineaux, C. W., and Holzwarth, A. R. (1990) A proportion of photosystem II core complexes are decoupled from the phycobilisome in light-state 2 in the cyanobacterium Synechococcus 6301, FEBS Lett., 260, 245–248.CrossRefGoogle Scholar
  21. 21.
    Mullineaux C. W., Tobin M. J., and Jones G. R. (1997) Mobility of photosynthetic complexes in thylakoid membranes, Nature, 390, 421–424.CrossRefGoogle Scholar
  22. 22.
    Schluchter, W. M., Shen, G., Zhao, J., and Bryant, D. A. (1996) Characterization of psaI and psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria, Photochem. Photobiol., 64, 53–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Meunier, P. C., Colon-Lopez, M. S., and Sherman, L. A. (1997) Temporal changes in state transitions and photosystem organization in the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142, Plant Physiol., 115, 991–1000.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Ivanov, A. G., Krol, M., Sveshnikov, D., Selstam, E., Sandstrom, St., Koochek, M., Park, Y.-I., Vasil’ev, S., Bruce, D., Oquist, G., and Huner, N. P. A. (2006) Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo, Plant Physiol., 141, 1436–1445.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Zhang, R., and Zhao, J. X. J. (2009) The mobility of PSI and PQ molecules in Spirulina platensis cells during state transition, Photosynth. Res., 99, 107–113.PubMedCrossRefGoogle Scholar
  26. 26.
    McConnell, M. D., Koop, R., Vasil’ev, S., and Bruce, D. (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition, Plant Physiol., 130, 1201–1212.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Huang, Ch., Yuan, X., Zhao, J., and Bryant, D. A. (2003) Kinetics analyses of state transitions of the cyanobacterium Synechococcus sp. PCC 7002 and its mutant strains impaired in electron transport, Biochim. Biophys. Acta, 1607, 121–130.PubMedCrossRefGoogle Scholar
  28. 28.
    Mi, H., Klughammer, Ch., and Schreiber, U. (2000) Light-induced dynamic changes of NADPH fluorescence in Synechocystis PCC 6803 and its ndhB-defective mutant M55, Plant Cell Physiol., 41, 1129–1135.PubMedCrossRefGoogle Scholar
  29. 29.
    Cooley, J. W., and Vermaas, W. F. J. (2001) Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function, J. Bacteriol., 183, 4251–4258.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Van Thor, J. J., Jeanjean, R., Havaux, M., Sjollema, K. A., Joset, F., Hellingwerf, K. J., and Matthijs, H. C. P. (2000) Salt shock-inducible photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin:NADP+ reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain, Biochim. Biophys. Acta, 1457, 129–144.PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas, D. J., Thomas, J., Youderian, Ph. A., and Herbert, St. H. (2001) Photoinhibition and light-induced cyclic electron transport in ndh and psa0 mutants of Synechocystis sp. PCC 6803, Plant Cell Physiol., 42, 803–812.PubMedCrossRefGoogle Scholar
  32. 32.
    Finazzi, G., Rappaport, F., Furia, A., Fleischmann, M., Rochaix, J.-D., Zito, F., and Forti, G. (2002) Involvement of state transition in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii, EMBO Rep., 3, 280–285.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Barbagallo, R. P., Bergo, E., Barbato, R., and Forti, G. (2001) Photoinhibition of Chlamydomonas reinhardtii in state 1 and state 2, J. Biol. Chem., 276, 22251–22257.PubMedCrossRefGoogle Scholar
  34. 34.
    Bolychevtseva, Y., Elanskaya, I. V., and Karapetyan, N. V. (2011) Regulation of cyclic electron transport through photosystem I in the mutant cells of the cyanobacterium Synechocystis sp. PCC 6803 devoid of respiratory dehydrogenases, Biochemistry (Moscow), 76, 427–437.CrossRefGoogle Scholar
  35. 35.
    Howitt, C. A., Cooley, J. W., Wiskich J. T., and Vermaas, W. F. J. (2001) A strain of Synechocystis sp. PCC 6803 without photosynthetic oxygen evolution and respiratory oxygen consumption: implications for the study of cyclic photosynthetic electron transport, Planta, 214, 46–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Howitt C. A., and Vermaas W. F. J. (1998) Quinol and cytochrome oxidases in the cyanobacterium Synechocystis PCC 6803, Biochemistry, 37, 17944–17951.PubMedCrossRefGoogle Scholar
  37. 37.
    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 111, 1–61.CrossRefGoogle Scholar
  38. 38.
    Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, in Methods in Enzymology, Vol. 148 (Colowick, S. P., and Kaplan, N. O., eds.) Academic Press Inc., San Diego, pp. 350–382.Google Scholar
  39. 39.
    Schreiber, U., Schliwa, U., and Bilger, W. (1986) Continuous recording of photochemical and non-photo-chemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosynth. Res., 10, 51–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Schreiber, U., Klughammer, C., and Neubauer, C. (1988) Measuring P700 absorbance changes around 830 nm with a new type of pulse modulation system, Z. Naturforsch., 43c, 686–698.Google Scholar
  41. 41.
    Mullineaux, C. W., and Allen, J. F. (1988) Fluorescence induction transients indicate dissociation of photosystem II from the phycobilisome during the State-2 transition in the cyanobacterium Synechococcus 6301, Biochim. Biophys. Acta, 934, 96–107.CrossRefGoogle Scholar
  42. 42.
    Berry, S., Schneider, D., Vermaas, W. F. J., and Roegner, V. (2002) Electron transport routes in whole cells of Synechocystis sp. strain PCC 6803: the role of the cytochrome bd-type oxidase, Biochemistry, 41, 3422–3429.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhu X.-G., Govindjee Baker N. R., d’Sturler E., Ort D. R., and Long S. P. (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II, Planta, 223, 114–133.PubMedCrossRefGoogle Scholar
  44. 44.
    Toth, S. Z., Schansker, G., and Strasser, R. J. (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient, Photosynth. Res., 93, 193–203.PubMedCrossRefGoogle Scholar
  45. 45.
    Tsimilli-Michael, M., Stamatakis, K., and Papageorgiou, G. C. (2009) Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition, Photosynth. Res., 99, 243–255.PubMedCrossRefGoogle Scholar
  46. 46.
    Schansker, G., Toth, S. Z., and Strasser, R. J. (2006) Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side, Biochim. Biophys. Acta, 1757, 787–797.PubMedCrossRefGoogle Scholar
  47. 47.
    Van Wijk, K. J., and Van Hasselt, Ph. R. (1993) Photoinhibition of photosystem II in vivo is preceded by down-regulation through light-induced acidification of the lumen: consequences for the mechanism of photoinhibition in vivo, Planta, 189, 359–368.PubMedCrossRefGoogle Scholar
  48. 48.
    Ivanov, A. G., Sane, P. V., Hurry, V., Oquist, G., and Huner, N. P. A. (2008) Photosystem II reaction centre quenching: mechanisms and physiological role, Photosynth. Res., 98, 565–574.PubMedCrossRefGoogle Scholar
  49. 49.
    Vass, I., and Cser, K. (2009) Janus-faced charge recombinations in photosystem II photoinhibition, Trends Plant Sci., 14, 200–205.PubMedCrossRefGoogle Scholar
  50. 50.
    Keren, N., Berg, A., Van Kan, P. J. M., Levanon, H., and Ohad, I. (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow, Proc. Natl. Acad. Sci. USA, 94, 1579–1584.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Ohad, I., Berg, A., Berkowicz, S. M., Kaplan, A., and Keren, N. (2011) Photoinactivation of photosystem II: is there more than one way to skin a cat? Physiol. Plant., 142, 79–86.PubMedCrossRefGoogle Scholar
  52. 52.
    Demmig B., and Bjorkman O. (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in the leaves of higher plants, Planta, 171, 171–184.PubMedCrossRefGoogle Scholar
  53. 53.
    Ma, W., Mi, H., and Shen, Yu. (2010) Influence of the redox state of QA on phycobilisome mobility in the cyanobacterium Synechocystis sp. strain PCC6803, J. Luminesc., 130, 1169–1173.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Y. V. Bolychevtseva
    • 1
    Email author
  • F. I. Kuzminov
    • 2
    • 3
  • I. V. Elanskaya
    • 4
  • M. Y. Gorbunov
    • 3
  • N. V. Karapetyan
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Department of Marine and Coastal Sciences, Rutgersthe State University of New JerseyNew BrunswickUSA
  4. 4.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations