Biochemistry (Moscow)

, Volume 79, Issue 13, pp 1562–1583 | Cite as

Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes

  • E. V. Kalinina
  • N. N. Chernov
  • M. D. Novichkova


Over the last decade fundamentally new features have been revealed for the participation of glutathione and glutathione-dependent enzymes (glutathione transferase and glutaredoxin) in cell proliferation, apoptosis, protein folding, and cell signaling. Reduced glutathione (GSH) plays an important role in maintaining cellular redox status by participating in thiol-disulfide exchange, which regulates a number of cell functions including gene expression and the activity of individual enzymes and enzyme systems. Maintaining optimum GSH/GSSG ratio is essential to cell viability. Decrease in the ratio can serve as an indicator of damage to the cell redox status and of changes in redox-dependent gene regulation. Disturbance of intracellular GSH balance is observed in a number of pathologies including cancer. Consequences of inappropriate GSH/GSSG ratio include significant changes in the mechanism of cellular redox-dependent signaling controlled both nonenzymatically and enzymatically with the participation of isoforms of glutathione transferase and glutaredoxin. This review summarizes recent data on the role of glutathione, glutathione transferase, and glutaredoxin in the regulation of cellular redox-dependent processes.

Key words

glutathione glutathione transferase glutaredoxin redox regulation 



apoptosis-inducing factor


serine/threonine AMP-activated protein kinase


antioxidant responsive element


apoptosis signal-regulating kinase-1


buthionine sulfoximine


extracellular signal-regulated kinase


γ-glutamylcysteine ligase


glutathione peroxidase




glutathione synthetase


glutathione reduced/oxidized


glutathione S-transferase




c-Jun N-terminal kinase


lipid peroxidation


mitogen-activated protein kinase


mitochondrial glutathione


nuclear glutathione


2-oxyglutarate carrier






reactive nitrogen species


reactive oxygen species




thioredoxin reductase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nagy, P. (2013) Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways, Antioxid. Redox Signal., 18, 1623–1641.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Janssen-Heininger, Y. M., Nolin, J. D., Hoffman, S. M., van der Velden, J. L., Tully, J. E., Lahue, K. G., Abdalla, S. T., Chapman, D. G., Reynaert, N. L., van der Vliet, A., and Anathy, V. (2013) Emerging mechanisms of glutathione-dependent chemistry in biology and disease, J. Cell. Biochem., 114, 1962–1968.PubMedGoogle Scholar
  3. 3.
    Lu, S. C. (2013) Glutathione synthesis, Biochim. Biophys. Acta, 1830, 3143–3153.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Franco, R., and Cidlowski, J. A. (2009) Apoptosis and glutathione: beyond an antioxidant, Cell Death Different., 16, 1303–1314.Google Scholar
  5. 5.
    Deponte, M. (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes, Biochim. Biophys. Acta, 1830, 3217–3266.PubMedGoogle Scholar
  6. 6.
    Townsend, D. M., Tew, K. D., and Tapiero, H. (2003) The importance of glutathione in human disease, Biomed. Pharmacother., 57, 145–155.PubMedGoogle Scholar
  7. 7.
    Grek, C. L., Zhang, J., Manevich, Y., Danyelle, M., Townsend, D. M., and Tew, K. D. (2013) Causes and consequences of cysteine S-glutathionylation, J. Biol. Chem., 288, 26497–26504.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Board, P. G., and Menon, D. (2013) Glutathione transferases, regulators of cellular metabolism and physiology, Biochim. Biophys. Acta, 1830, 3267–3288.PubMedGoogle Scholar
  9. 9.
    Allen, E. M., and Mieyal, J. J. (2012) Protein-thiol oxidation and cell death: regulatory role of glutaredoxins, Antioxid. Redox Signal., 17, 1748–1763.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Lillig, C. H., and Berndt, C. (2013) Glutaredoxins in thiol/disulfide exchange, Antioxid. Redox Signal., 18, 1654–1665.PubMedGoogle Scholar
  11. 11.
    Green, R. M., Graham, M., O’Donovan, M. R., Chipman, J. K., and Hodges, N. J. (2006) Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity, Mutagenesis, 21, 383–390.PubMedGoogle Scholar
  12. 12.
    Ookhtens, M., and Kaplowitz, N. (1998) Role of the liver in interorgan homeostasis of glutathione and cyst(e)ine, Sem. Liver Dis., 18, 313–329.Google Scholar
  13. 13.
    Galano, A., and Alvarez-Idaboy, J. R. (2011) Glutathione: mechanism and kinetics of its non-enzymatic defense action against free radicals, RSC Adv., 1, 1763–1771.Google Scholar
  14. 14.
    Winterbourn, C. C. (1993) Superoxide as an intracellular radical sink, Free Rad. Biol. Med., 14, 85–90.PubMedGoogle Scholar
  15. 15.
    Ortega, A. L., Mena, S., and Estrela, J. M. (2011) Glutathione in cancer cell death, Cancers, 3, 1285–1310.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Go, Y.-M., and Jones, D. P. (2008) Redox compartmentalization in eukaryotic cells, Biochim. Biophys. Acta, 1780, 1273–1290.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Jones, D. P. (2006) Redefining oxidative stress, Antioxid. Redox Signal., 8, 1865–1879.PubMedGoogle Scholar
  18. 18.
    Cai, Z., and Yan, L. J. (2013) Protein oxidative modifications: beneficial roles in disease and health, J. Biochem. Pharmacol. Res., 1, 15–26.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Jacob, C., Battaglia, E., Burkholz, T., Peng, D., Bagrel, D., and Montenarh, M. (2012) Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications, Chem. Res. Toxicol., 25, 588–604.PubMedGoogle Scholar
  20. 20.
    Rhee, S. G., Jeong, W., Chang, T.-S., and Woo, H. A. (2007) Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance, Kidney Int. Suppl., 72, S3–S8.Google Scholar
  21. 21.
    Fitzpatrick, A. M., Jones, D. P., and Brown, L. A. (2012) Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities, Antioxid. Redox Signal., 17, 375–408.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Fiaschi, T., Cozzi, G., Raugei, G., Formigli, L., Ramponi, G., and Chiarugi, P. (2006) Redox regulation of beta-actin during integrin-mediated cell adhesion, J. Biol. Chem., 281, 22983–22991.PubMedGoogle Scholar
  23. 23.
    Qanungo, S., Starke, D. W., Pai, H. V., Mieyal, J. J., and Nieminen, A. L. (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFκΒ, J. Biol. Chem., 282, 18427–18436.PubMedGoogle Scholar
  24. 24.
    Reynaert, N. L., van der Vliet, A., Guala, A. S., McGovern, T., Hristova, M., Pantano, C., Heintz, N. H., Heim, J., Ho, Y. S., Matthews, D. E., Wouters, E. F., and Janssen-Heininger, Y. M. (2006) Dynamic redox control of NF-κB through glutaredoxin-regulated S-glutathionylation of inhibitory κB kinase β, Proc. Natl. Acad. Sci. USA, 103, 13086–13091.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Lluis, J. M., Morales, A., Blasco, C., Colell, A., Mari, M., Garcia-Ruiz, C., and Fernandez-Checa, J. C. (2005) Critical role of mitochondrial glutathione in the survival of hepatocytes during hypoxia, J. Biol. Chem., 280, 3224–3232.PubMedGoogle Scholar
  26. 26.
    Markovic, J., Borras, C., Ortega, A., Sastre, J., Vina, J., and Pallardo, F. V. (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation, J. Biol. Chem., 282, 20416–20424.PubMedGoogle Scholar
  27. 27.
    Garcia-Gimenez, J. L., Markovic, J., Dasi, F., Queval, G., Schnaubelt, D., Foyer, C. H., and Pallardo, F. V. (2013) Nuclear glutathione, Biochim. Biophys. Acta, 1830, 3304–3316.PubMedGoogle Scholar
  28. 28.
    Bellomo, G., Palladini, G., and Vairetti, M. (1997) Intranuclear distribution, function and fate of glutathione and glutathione-S-conjugate in living rat hepatocytes studied by fluorescence microscopy, Microsc. Res. Techn., 36, 243–252.Google Scholar
  29. 29.
    Ho, Y. F., and Guenthner, T. M. (1994) Uptake and biosynthesis of glutathione by isolated hepatic nuclei, Toxicologist, 14, 178.Google Scholar
  30. 30.
    Voehringer, D. W., McConkey, D. J., McDonnell, T. J., Brisbay, S., and Meyn, R. E. (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus, Proc. Natl. Acad. Sci. USA, 95, 2956–2960.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Zimmermann, A. K., Loucks, F. A., Schroeder, E. K., Bouchard, R. J., Tyler, K. L., and Linseman, D. A. (2007) Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria, J. Biol. Chem., 282, 29296–29304.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Carpenter, G., and Cohen, S. (1990) Epidermal growth factor, J. Biol. Chem., 265, 7709–7712.PubMedGoogle Scholar
  33. 33.
    Jang, J. H., and Surh, Y. J. (2003) Potentiation of cellular antioxidant capacity by Bcl-2: implications for its antiapoptotic function, Biochem. Pharmacol., 66, 1371–1379.PubMedGoogle Scholar
  34. 34.
    Schafer, F. Q., and Buettner, G. R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Rad. Biol. Med., 30, 1191–1212.PubMedGoogle Scholar
  35. 35.
    Soboll, S., Grundel, S., Harris, J., Kolb-Bachofen, V., Ketterer, B., and Sies, H. (1995) The content of glutathione and glutathione S-transferases and the glutathione peroxidase activity in rat liver nuclei determined by a non-aqueous technique of cell fractionation, Biochem. J., 311(Pt. 3), 889–894.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Conrad, M., Moreno, S. G., Sinowatz, F., Ursini, F., Kolle, S., Roveri, A., Brielmeier, M., Wurst, W., Maiorino, M., and Bornkamm, G. W. (2005) The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability, Mol. Cell. Biol., 25, 7637–7644.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Pujari, G., Berni, A., Palitti, F., and Chatterjee, A. (2009) Influence of glutathione levels on radiation-induced chromosomal DNA damage and repair in human peripheral lymphocytes, Mutat. Res., 675, 23–28.PubMedGoogle Scholar
  38. 38.
    Berger, F., Ramirez-Hernandez, M. H., and Ziegler, M. (2004) The new life of a centenarian: signaling functions of NAD(P), Trends Biochem. Sci., 29, 111–118.PubMedGoogle Scholar
  39. 39.
    Pellny, T. K., Locato, V., Vivancos, P. D., Markovic, J., De Gara, L., Pallardo, F. V., and Foyer, C. H. (2009) Pyridine nucleotide cycling and control of intracellular redox state in relation to poly(ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture, Mol. Plant, 2, 442–456.PubMedGoogle Scholar
  40. 40.
    Garcia-Gimenez, J. L., Ledesma, A. M., Esmoris, I., Roma-Mateo, C., Sanz, P., Vina, J., and Pallardo, F. V. (2012) Histone carbonylation occurs in proliferating cells, Free Rad. Biol. Med., 52, 1453–1464.PubMedGoogle Scholar
  41. 41.
    Cadenas, E., and Davies, K. J. (2000) Mitochondrial free radical generation, oxidative stress, and aging, Free Rad. Biol. Med., 29, 222–230.PubMedGoogle Scholar
  42. 42.
    Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C., and Fernandez-Checa, J. C. (2009) Mitochondrial glutathione, a key survival antioxidant, Antioxid. Redox Signal., 11, 2685–2700.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Cole-Ezea, P., Swan, D., Shanley, D., and Hesketh, J. (2012) Glutathione peroxidase 4 has a major role in protecting mitochondria from oxidative damage and maintaining oxidative phosphorylation complexes in gut epithelial cells, Free Rad. Biol. Med., 53, 488–497.PubMedGoogle Scholar
  44. 44.
    Liang, H., Ran, Q., Jang, Y. C., Holstein, D., Lechleiter, J., McDonald-Marsh, T., Musatov, A., Song, W., Van Remmen, H., and Richardson, A. (2009) Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria, Free Rad. Biol. Med., 47, 312–320.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C., Kaplowitz, N., and Fernandez-Checa, J. C. (2013) Mitochondrial glutathione: features, regulation and role in disease, Biochim. Biophys. Acta, 1830, 3317–3328.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Johansson, C., Lillig, C. H., and Holmgren, A. (2004) Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase, J. Biol. Chem., 279, 7537–7543.PubMedGoogle Scholar
  47. 47.
    Knoops, B., Goemaere, J., Van der Eecken, V., and Declercq, J. P. (2011) Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin, Antioxid. Redox Signal., 15, 817–829.PubMedGoogle Scholar
  48. 48.
    Zhang, H., Go, Y. M., and Jones, D. P. (2007) Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress, Arch. Biochem. Biophys., 465, 119–126.PubMedGoogle Scholar
  49. 49.
    Taylor, E. R., Hurrell, F., Shannon, R. J., Lin, T. K., Hirst, J., and Murphy, M. P. (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation, J. Biol. Chem., 278, 19603–19610.PubMedGoogle Scholar
  50. 50.
    Beer, S. M., Taylor, E. R., Brown, S. E., Dahm, C. C., Costa, N. J., Runswick, M. J., and Murphy, M. P. (2004) Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense, J. Biol. Chem., 279, 47939–47951.PubMedGoogle Scholar
  51. 51.
    Hurd, T. R., Requejo, R., Filipovska, A., Brown, S., Prime, T. A., Robinson, A. J., Fearnley, I. M., and Murphy, M. P. (2008) Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys531 and Cys704 of the 75-kDa subunit: potential role of Cys residues in decreasing oxidative damage, J. Biol. Chem., 283, 24801–24815.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Mailloux, R. J., Jin, X., and Willmore, W. G. (2013) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions, Redox Biol., 2, 123–139.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Tretter, L., and Adam-Vizi, V. (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of α-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress, J. Neurosci., 20, 8972–8979.PubMedGoogle Scholar
  54. 54.
    Gibson, G. E., Park, L. C., Sheu, K. F., Blass, J. P., and Calingasan, N. Y. (2000) The alpha-ketoglutarate dehydrogenase complex in neurodegeneration, Neurochem. Int., 36, 97–112.PubMedGoogle Scholar
  55. 55.
    Cazanave, S., Berson, A., Haouzi, D., Vadrot, N., Fau, D., Grodet, A., Letteron, P., Feldmann, G., El-Benna, J., Fromenty, B., Robin, M. A., and Pessayre, D. (2007) High hepatic glutathione stores alleviate Fas-induced apoptosis in mice, J. Hepatol., 46, 858–868.PubMedGoogle Scholar
  56. 56.
    Aoyama, K., Watabe, M., and Nakaki, T. (2012) Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18, Amino Acids, 42, 163–169.PubMedGoogle Scholar
  57. 57.
    Thompson, J. A., and Franklin, C. C. (2009) Enhanced glutathione biosynthetic capacity promotes resistance to As3+-induced apoptosis, Toxicol. Lett., 193, 33–40.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Pias, E. K., and Aw, T. Y. (2002) Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells, Cell Death Different., 9, 1007–1016.Google Scholar
  59. 59.
    Pias, E. K., and Aw, T. Y. (2002) Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production, FASEB J., 16, 781–790.PubMedGoogle Scholar
  60. 60.
    Wang, T. G., Gotoh, Y., Jennings, M. H., Rhoads, C. A., and Aw, T. Y. (2000) Lipid hydroperoxide-induced apoptosis in human colonic CaCo-2 cells is associated with an early loss of cellular redox balance, FASEB J., 14, 1567–1576.PubMedGoogle Scholar
  61. 61.
    Ekshyyan, O., and Aw, T. Y. (2005) Decreased susceptibility of differentiated PC12 cells to oxidative challenge: relationship to cellular redox and expression of apoptotic protease activator factor-1, Cell Death Different., 12, 1066–1077.Google Scholar
  62. 62.
    Okouchi, M., Okayama, N., and Aw, T. Y. (2005) Differential susceptibility of naive and differentiated PC-12 cells to methylglyoxal-induced apoptosis: influence of cellular redox, Curr. Neurovasc. Res., 2, 13–22.PubMedGoogle Scholar
  63. 63.
    Runchel, C., Matsuzawa, A., and Ichijo, H. (2011) Mitogen-activated protein kinases in mammalian oxidative stress responses, Antioxid. Redox Signal., 15, 205–218.PubMedGoogle Scholar
  64. 64.
    Kyriakis, J. M., and Avruch, J. (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation, Physiol. Rev., 81, 807–869.PubMedGoogle Scholar
  65. 65.
    Circu, M. L., and Aw, T. Y. (2010) Reactive oxygen species, cellular redox systems, and apoptosis, Free Rad. Biol. Med., 48, 749–762.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Lu, G. D., Shen, H. M., Chung, M. C., and Ong, C. N. (2007) Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells, Carcinogenesis, 28, 1937–1945.PubMedGoogle Scholar
  67. 67.
    Cuadrado, A., Garcia-Fernandez, L. F., Gonzalez, L., Suarez, Y., Losada, A., Alcaide, V., Martinez, T., Fernandez-Sousa, J. M., Sanchez-Puelles, J. M., and Munoz, A. (2003) Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK, J. Biol. Chem., 278, 241–250.PubMedGoogle Scholar
  68. 68.
    Ji, L., Shen, K., Jiang, P., Morahan, G., and Wang, Z. (2011) Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells, Mol. Carcinogen., 50, 580–591.Google Scholar
  69. 69.
    Filomeni, G., Rotilio, G., and Ciriolo, M. R. (2003) Glutathione disulfide induces apoptosis in U937 cells by a redox-mediated p38 MAP kinase pathway, FASEB J., 17, 64–66.PubMedGoogle Scholar
  70. 70.
    Filomeni, G., Aquilano, K., Civitareale, P., Rotilio, G., and Ciriolo, M. R. (2005) Activation of c-Jun-N-terminal kinase is required for apoptosis triggered by glutathione disulfide in neuroblastoma cells, Free Rad. Biol. Med., 39, 345–354.PubMedGoogle Scholar
  71. 71.
    Piccirillo, S., Filomeni, G., Brune, B., Rotilio, G., and Ciriolo, M. R. (2009) Redox mechanisms involved in the selective activation of Nrf2-mediated resistance versus p53-dependent apoptosis in adenocarcinoma cells, J. Biol. Chem., 284, 27721–27733.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Filomeni, G., Piccirillo, S., Rotilio, G., and Ciriolo, M. R. (2012) p38(MAPK) and ERK1/2 dictate cell death/survival response to different pro-oxidant stimuli via p53 and Nrf2 in neuroblastoma cells SH-SY5Y, Biochem. Pharmacol., 83, 1349–1357.PubMedGoogle Scholar
  73. 73.
    Cross, J. V., and Templeton, D. J. (2004) Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain, Biochem. J., 381, 675–683.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Ghosh, S., Pulinilkunnil, T., Yuen, G., Kewalramani, G., An, D., Qi, D., Abrahani, A., and Rodrigues, B. (2005) Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion, Am. J. Physiol. Heart Circ. Physiol., 289, H768–H776.Google Scholar
  75. 75.
    Armstrong, J. S., Steinauer, K. K., Hornung, B., Irish, J. M., Lecane, P., Birrell, G. W., Peehl, D. M., and Knox, S. J. (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line, Cell Death Different., 9, 252–263.Google Scholar
  76. 76.
    Mari, M., Colell, A., Morales, A., Caballero, F., Moles, A., Fernandez, A., Terrones, O., Basanez, G., Antonsson, B., Garcia-Ruiz, C., and Fernandez-Checa, J. C. (2008) Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-κB activation, Gastroenterology, 134, 1507–1520.PubMedGoogle Scholar
  77. 77.
    Circu, M. L., Rodriguez, C., Maloney, R., Moyer, M. P., and Aw, T. Y. (2008) Contribution of mitochondrial GSH transport to matrix GSH status and colonic epithelial cell apoptosis, Free Rad. Biol. Med., 44, 768–778.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Martins, N. M., Santos, N. A., Curti, C., Bianchi, M. L., and Santos, A. C. (2008) Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver, J. Appl. Toxicol., 28, 337–344.PubMedGoogle Scholar
  79. 79.
    Santos, N. A., Catao, C. S., Martins, N. M., Curti, C., Bianchi, M. L., and Santos, A. C. (2007) Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria, Arch. Toxicol., 81, 495–504.PubMedGoogle Scholar
  80. 80.
    Chen, G., Chen, Z., Hu, Y., and Huang, P. (2011) Inhibition of mitochondrial respiration and rapid depletion of mitochondrial glutathione by beta-phenethyl isothiocyanate: mechanisms for anti-leukemia activity, Antioxid. Redox Signal., 15, 2911–2921.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Chernyak, B. V., and Bernardi, P. (1996) The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites, Europ. J. Biochem., 238, 623–630.PubMedGoogle Scholar
  82. 82.
    Costantini, P., Chernyak, B. V., Petronilli, V., and Bernardi, P. (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites, J. Biol. Chem., 271, 6746–6751.PubMedGoogle Scholar
  83. 83.
    Aon, M. A., Cortassa, S., Maack, C., and O’Rourke, B. (2007) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status, J. Biol. Chem., 282, 21889–21900.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Wu, B., and Dong, D. (2012) Human cytosolic glutathione transferases: structure, function, and drug discovery, Trends Pharmacol. Sci., 33, 656–668.PubMedGoogle Scholar
  85. 85.
    Hayes, J. D., Flanagan, J. U., and Jowsey, I. R. (2005) Glutathione transferases, Ann. Rev. Pharmacol. Toxicol., 45, 51–88.Google Scholar
  86. 86.
    Tew, K. D., and Townsend, D. M. (2012) Glutathione-S-transferases as determinants of cell survival and death, Antioxid. Redox Signal., 17, 1728–1737.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Kulinskii, V. I. (1999) Detoxification of xenobiotics, Soros Ed. J., 1, 8–12.Google Scholar
  88. 88.
    Krajewski, M. P., Kanawati, B., Fekete, A., Kowalski, N., Schmitt-Kopplin, P., and Grill, E. (2013) Analysis of Arabidopsis glutathione-transferases in yeast, Phytochemistry, 91, 198–207.PubMedGoogle Scholar
  89. 89.
    Ladner, J. E., Parsons, J. F., Rife, C. L., Gilliland, G. L., and Armstrong, R. N. (2004) Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1, Biochemistry, 43, 352–361.PubMedGoogle Scholar
  90. 90.
    Jakobsson, P.-J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., and Persson, B. (1999) Common structural features of MAPEG — a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism, Protein Sci., 8, 689–692.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Morel, F., and Aninat, C. (2011) The glutathione transferase kappa family, Drug Metab. Rev., 43, 281–291.PubMedGoogle Scholar
  92. 92.
    Mandal, A. K., Skoch, J., Bacshai, B. J., Hyman, B. T., Christmas, P., Miller, D., Yamin, T. T., Xu, S., Wisniewski, D., Evans, J. F., and Soberman, R. J. (2004) The membrane organization of leukotriene synthesis, Proc. Natl. Acad. Sci. USA, 101, 6587–6592.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Oakley, A. (2011) Glutathione transferases: a structural perspective, Drug Metab. Rev., 43, 138–151.PubMedGoogle Scholar
  94. 94.
    Prabhu, K. S., Reddy, P. V., Jones, E. C., Liken, A. D., and Reddy, C. C. (2004) Characterization of a class alpha glutathione S-transferase with glutathione peroxidase activity in human liver microsomes, Arch. Biochem. Biophys., 424, 72–80.PubMedGoogle Scholar
  95. 95.
    Hiratsuka, A., Yamane, H., Yamazaki, S., Ozawa, N., and Watabe, T. (1997) Subunit Ya-specific glutathione peroxidase activity toward cholesterol 7-hydroperoxides of glutathione S-transferases in cytosols from rat liver and skin, J. Biol. Chem., 272, 4763–4769.PubMedGoogle Scholar
  96. 96.
    Hubatsch, I., Ridderstrom, M., and Mannervik, B. (1998) Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation, Biochem. J., 330, 175–179.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Dagnino-Subiabre, A., Cassels, B. K., Baez, S., Johansson, A. S., Mannervik, B., and Segura-Aguilar, J. (2000) Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones, Biochem. Biophys. Res. Commun., 274, 32–36.PubMedGoogle Scholar
  98. 98.
    Manevich, Y., Feinstein, S., and Fisher, A. B. (2004) Activation of the antioxidant enzyme 1-Cys peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST, Proc. Natl. Acad. Sci. USA, 101, 3780–3785.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Adler, V., Yin, Z., Fuchs, S. Y., Benezra, M., Rosario, L., Tew, K. D., Pincus, M. R., Sardana, M., Henderson, C. J., Wolf, C. R., Davis, R. J., and Ronai, Z. (1999) Regulation of JNK signaling by GSTp, EMBO J., 18, 1321–1334.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Wu, Y., Fan, Y., Xue, B., Luo, L., Shen, J., Zhang, S., Jiang, Y., and Yin, Z. (2006) Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals, Oncogene, 25, 5787–5800.PubMedGoogle Scholar
  101. 101.
    Sharma, A., Patrick, B., Li, J., Sharma, R., Jeyabal, P. V., Reddy, P. M., Awasthi, S., and Awasthi, Y. C. (2006) Glutathione S-transferases as antioxidant enzymes: small cell lung cancer (H69) cells transfected with hGSTA1 resist doxorubicin-induced apoptosis, Arch. Biochem. Biophys., 452, 165–173.PubMedGoogle Scholar
  102. 102.
    Dorion, S., Lambert, H., and Landry, J. (2002) Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1, J. Biol. Chem., 277, 30792–30797.PubMedGoogle Scholar
  103. 103.
    Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K., and Gotoh, Y. (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways, Science, 275, 90–94.PubMedGoogle Scholar
  104. 104.
    Lindahl, M., Mata-Cabana, A., and Kieselbach, T. (2011) The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance, Antioxid. Redox Signal., 14, 2581–2642.PubMedGoogle Scholar
  105. 105.
    Townsend, D. M., Manevich, Y., He, L., Hutchens, S., Pazoles, C. J., and Tew, K. D. (2009) Novel role for glutathione S-transferase pi. Regulator of protein S-glutathionylation following oxidative and nitrosative stress, J. Biol. Chem., 284, 436–445.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Ralat, L. A., Misquitta, S. A., Manevich, Y., Fisher, A. B., and Colman, R. F. (2008) Characterization of the complex of glutathione S-transferase pi and 1-cysteine peroxiredoxin, Arch. Biochem. Biophys., 474, 109–118.PubMedGoogle Scholar
  107. 107.
    Pettigrew, N. E., and Colman, R. F. (2001) Heterodimers of glutathione S-transferase can form between isoenzyme, Arch. Biochem. Biophys., 396, 225–230.PubMedGoogle Scholar
  108. 108.
    Tew, K. D., Manevich, Y., Grek, C., Xiong, Y., Uys, J., and Townsend, D. M. (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer, Free Rad. Biol. Med., 51, 299–313.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Ralat, L. A., Manevich, Y., Fisher, A. B., and Colman, R. F. (2006) Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes, Biochemistry, 45, 360–372.PubMedGoogle Scholar
  110. 110.
    Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nature Rev. Mol. Cell Biol., 13, 251–262.Google Scholar
  111. 111.
    Klaus, A., Zorman, S., Berthier, A., Polge, C., Ramirez, S., Michelland, S., Seve, M., Vertommen, D., Rider, M., Lentze, N., Auerbach, D., and Schlattner, U. (2013) Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro, PLoS One, 8, e62497.Google Scholar
  112. 112.
    Oakhill, J. S., Chen, Z. P., Scott, J. W., Steel, R., Castelli, L. A., Ling, N., Macaulay, S. L., and Kemp, B. E. (2010) β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK), Proc. Natl. Acad. Sci. USA, 107, 19237–19241.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Zmijewski, J. W., Banerjee, S., Bae, H., Friggeri, A., Lazarowski, E. R., and Abraham, E. (2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase, J. Biol. Chem., 285, 33154–33164.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Hawley, S. A., Ross, F. A., Chevtzoff, C., Green, K. A., Evans, A., Fogarty, S., Towler, M. C., Brown, L. J., Ogunbayo, O. A., Evans, A. M., and Hardie, D. G. (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab., 11, 554–565.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Zou, M. H., Kirkpatrick, S. S., Davis, B. J., Nelson, J. S., Wiles, W. G., Schlattner, U., Neumann, D., Brownlee, M., Freeman, M. B., and Goldman, M. H. (2004) Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species, J. Biol. Chem., 279, 43940–43951.PubMedGoogle Scholar
  116. 116.
    Xie, Z., Dong, Y., Zhang, M., Cui, M. Z., Cohen, R. A., Riek, U., Neumann, D., Schlattner, U., and Zou, M. H. (2006) Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells, J. Biol. Chem., 281, 6366–6375.PubMedGoogle Scholar
  117. 117.
    Tikhanovich, I., Cox, J., and Weinman, S. A. (2013) Forkhead box class O transcription factors in liver function and disease, J. Gastroenterol. Hepatol., 28,Suppl. 1, 125–131.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Colombo, S. L., and Moncada, S. (2009) ΑΜPΚα1 regulates the antioxidant status of vascular endothelial cells, Biochem. J., 421, 163–169.PubMedGoogle Scholar
  119. 119.
    Wang, S., Dale, G. L., Song, P., Viollet, B., and Zou, M. H. (2010) ΑΜPΚα1 deletion shortens erythrocyte life span in mice: role of oxidative stress, J. Biol. Chem., 285, 19976–19985.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Gree, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P., and Brunet, A. (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J. Biol. Chem., 282, 30107–30119.Google Scholar
  121. 121.
    Xie, Z., Zhang, J., Wu, J., Viollet, B., and Zou, M. H. (2008) Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes, Diabetes, 57, 3222–3230.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Usatyuk, P. V., and Natarajan, V. (2004) Role of mitogenactivated protein kinases in 4-hydroxy-2-nonenal-induced actin remodeling and barrier function in endothelial cells, J. Biol. Chem., 279, 11789–11797.PubMedGoogle Scholar
  123. 123.
    Zarkovic, N., Ilic, Z., Jurin, M., Schaur, R. J., Puhl, H., and Esterbauer, H. (1993) Stimulation of HeLa cell growth by physiological concentrations of 4-hydroxynonenal, Cell Biochem. Function, 11, 279–286.Google Scholar
  124. 124.
    Pizzimenti, S., Barrera, G., Dianzani, M. U., and Brusselbach, S. (1999) Inhibition of D1, D2, and A-cyclin expression in HL-60 cells by the lipid peroxidation product 4-hydroxynonenal, Free Rad. Biol. Med., 26, 1578–1586.PubMedGoogle Scholar
  125. 125.
    Barrera, G., Pizzimenti, S., Laurora, S., Moroni, E., Giglioni, B., and Dianzani, M. U. (2002) 4-Hydroxynonenal affects pRb/E2F pathway in HL-60 human leukemic cells, Biochem. Biophys. Res. Commun., 295, 267–275.PubMedGoogle Scholar
  126. 126.
    He, N. G., Singhal, S. S., Srivastava, S. K., Zimniak, P., Awasthi, Y. C., and Awasthi, S. (1996) Transfection of a 4-hydroxynonenal metabolizing glutathione S-transferase isozyme, mouse GSTA4-4, confers doxorubicin resistance to Chinese hamster ovary cells, Arch. Biochem. Biophys., 333, 214–220.PubMedGoogle Scholar
  127. 127.
    Gallagher, E. P., Gardner, J. L., and Barber, D. S. (2006) Several glutathione S-transferase isozymes that protect against oxidative injury are expressed in human liver mitochondria, Biochem. Pharmacol., 71, 1619–1628.PubMedGoogle Scholar
  128. 128.
    Gallagher, E. P., and Gardner, J. L. (2002) Comparative expression of two alpha class glutathione S-transferases in human adult and prenatal liver tissues, Biochem. Pharmacol., 63, 2025–2036.PubMedGoogle Scholar
  129. 129.
    Raza, H. (2011) Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease, FEBS J., 278, 4243–4251.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Desmots, F., Rissel, M., Gilot, D., Lagadic-Gossmann, D., Morel, F., Guguen-Guillouzo, C., Guillouzo, A., and Loyer, P. (2002) Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes, J. Biol. Chem., 277, 17892–17900.PubMedGoogle Scholar
  131. 131.
    Curtis, J. M., Grimsrud, P. A., Wright, W. S., Xu, X., Foncea, R. E., Graham, D. W., Brestoff, J. R., Wiczer, B. M., Ilkayeva, O., Cianflone, K., Muoio, D. E., Arriaga, E. A., and Bernlohr, D. A. (2010) Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction, Diabetes, 59, 1132–1142.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Hyman, S. E., Malenka, R. C., and Nestler, E. J. (2006) Neural mechanisms of addiction: the role of reward-related learning and memory, Ann. Rev. Neurosci., 29, 565–598.PubMedGoogle Scholar
  133. 133.
    Kalivas, P. W., and O’Brien, C. (2008) Drug addiction as a pathology of staged neuroplasticity, Neuropsychopharmacology, 33, 166–180.PubMedGoogle Scholar
  134. 134.
    Klatt, P., and Lamas, S. (2002) c-Jun regulation by S-glutathionylation, Methods Enzymol., 348, 157–174.PubMedGoogle Scholar
  135. 135.
    Humphries, K. M., Deal, M. S., and Taylor, S. S. (2005) Enhanced dephosphorylation of cAMP-dependent protein kinase by oxidation and thiol modification, J. Biol. Chem., 280, 2750–2758.PubMedGoogle Scholar
  136. 136.
    Uys, J. D., Knackstedt, L., Hurt, P., Tew, K. D., Manevich, Y., Hutchens, S., Townsend, D. M., and Kalivas, P. W. (2011) Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity, Neuropsychopharmacolgy, 36, 2551–2560.Google Scholar
  137. 137.
    Sun, K. H., Chang, K. H., Clawson, S., Ghosh, S., Mirzaei, H., Regnier, F., and Shah, K. (2011) Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity, J. Neurochem., 118, 902–914.PubMedGoogle Scholar
  138. 138.
    Castro-Caldas, M., Carvalho, A. N., Rodrigues, E., Henderson, C., Wolf, C. R., and Gama, M. J. (2012) Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway, Mol. Neurobiol., 45, 466–477.PubMedGoogle Scholar
  139. 139.
    McIlwain, C. C., Townsend, D. M., and Tew, K. D. (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy, Oncogene, 25, 1639–1648.PubMedGoogle Scholar
  140. 140.
    Davis, Jr. W., Ronai, Z., and Tew, K. D. (2001) Cellular thiols and reactive oxygen species in drug-induced apoptosis, J. Pharmacol. Exp. Therap., 296, 1–6.Google Scholar
  141. 141.
    Hayes, J. D., and Pulford, D. J. (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance, Crit. Rev. Biochem. Mol. Biol., 30, 445–600.PubMedGoogle Scholar
  142. 142.
    Higgins, L. G., and Hayes, J. D. (2011) Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents, Drug Metab. Rev., 43, 92–137.PubMedGoogle Scholar
  143. 143.
    Pool-Zobel, B., Veeriah, S., and Bohmer, F. D. (2005) Modulation of xenobiotic metabolizing enzymes by anticarcinogens — focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis, Mutat. Res., 591, 74–92.PubMedGoogle Scholar
  144. 144.
    McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., and Hayes, J. D. (2006) Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex, J. Biol. Chem., 281, 24756–24768.PubMedGoogle Scholar
  145. 145.
    Alves, R., Vilaprinyo, E., Sorribas, A., and Herrero, E. (2009) Evolution based on domain combinations: the case of glutaredoxins, BMC Evol. Biol., 9, artical 66.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Rouhier, N. (2010) Plant glutaredoxins: pivotal players in redox biology and iron-sulfur center assembly, New Phytol., 186, 365–372.PubMedGoogle Scholar
  147. 147.
    Lillig, C. H., Berndt, C., and Holmgren, A. (2008) Glutaredoxin systems, Biochim. Biophys. Acta, 1780, 1304–1317.PubMedGoogle Scholar
  148. 148.
    Johansson, C., Roos, A. K., Montano, S. J., Sengupta, R., Filippakopoulos, P., Guo, K., von Delft, F., Holmgren, A., Oppermann, U., and Kavanagh, K. L. (2011) The crystal structure of human GLRX5: iron-sulfur cluster coordination, tetrameric assembly and monomer activity, Biochem. J., 433, 303–311.PubMedGoogle Scholar
  149. 149.
    Couturier, J., Jacquot, J. P., and Rouhier, N. (2009) Evolution and diversity of glutaredoxins in photosynthetic organisms, Cell. Mol. Life Sci., 66, 2539–2557.PubMedGoogle Scholar
  150. 150.
    Benyamina, S. M., Baldacci-Cresp, F., Couturier, J., Chibani, K., Hopkins, J., Bekki, A., de Lajudie, P., Rouhier, N., Jacquot, J. P., Alloing, G., Puppo, A., and Frendo, P. (2013) Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation, Environ. Microbiol., 15, 795–810.PubMedGoogle Scholar
  151. 151.
    Xing, S., Lauri, A., and Zachgo, S. (2006) Redox regulation and flower development: a novel function for glutaredoxins, Plant Biol., 8, 547–555.PubMedGoogle Scholar
  152. 152.
    Hanschmann, E. M., Godoy, J. R., Berndt, C., Hudemann, C., and Lillig, C. H. (2013) Thioredoxins, glutaredoxins, and peroxiredoxins — molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling, Antioxid. Redox Signal., 19, 1539–1605.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Lundberg, M., Fernandes, A. P., Kumar, S., and Holmgren, A. (2004) Cellular and plasma levels of human glutaredoxin 1 and 2 detected by sensitive ELISA systems, Biochem. Biophys. Res. Commun., 319, 801–809.PubMedGoogle Scholar
  154. 154.
    Lonn, M. E., Hudemann, C., Berndt, C., Cherkasov, V., Capani, F., Holmgren, A., and Lillig, C. H. (2008) Expression pattern of human glutaredoxin 2 isoforms: identification and characterization of two testis/cancer cell-specific isoforms, Antioxid. Redox Signal., 10, 547–557.PubMedGoogle Scholar
  155. 155.
    Gallogly, M. M., Starke, D. W., and Mieyal, J. J. (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation, Antioxid. Redox Signal., 11, 1059–1081.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Stroher, E., and Millar, A. H. (2012) The biological roles of glutaredoxins, Biochem. J., 446, 333–348.PubMedGoogle Scholar
  157. 157.
    Watson, W. H., Chen, Y., and Jones, D. P. (2003) Redox state of glutathione and thioredoxin in differentiation and apoptosis, Biofactors, 17, 307–314.PubMedGoogle Scholar
  158. 158.
    Aslund, F., Berndt, K. D., and Holmgren, A. (1997) Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria, J. Biol. Chem., 272, 30780–30786.PubMedGoogle Scholar
  159. 159.
    Starke, D. W., Chock, P. B., and Mieyal, J. J. (2003) Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction, J. Biol. Chem., 278, 14607–14613.PubMedGoogle Scholar
  160. 160.
    Ruoppolo, M., Lundstrom-Ljung, J., Talamo, F., Pucci, P., and Marino, G. (1997) Effect of glutaredoxin and protein disulfide isomerase on the glutathione-dependent folding of ribonuclease A, Biochemistry, 36, 12259–12267.PubMedGoogle Scholar
  161. 161.
    Lillig, C. H., Berndt, C., Vergnolle, O., Lonn, M. E., Hudemann, C., Bill, E., and Holmgren, A. (2005) Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor, Proc. Natl. Acad. Sci. USA, 102, 8168–8173.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Riondet, C., Desouris, J. P., Montoya, J. G., Chartier, Y., Meyer, Y., and Reichheld, J.-P. (2012) A dicotyledon-specific glutaredoxin GRXC1 family with dimer-dependent redox regulation is functionally redundant with GRXC2, Plant Cell Environ., 35, 360–373.PubMedGoogle Scholar
  163. 163.
    Feng, Y. G., Zhong, N., Rouhier, N., Hase, T., Kusunoki, M., Jacquot, J. P., Jin, C. W., and Xia, B. (2006) Structural insight into poplar glutaredoxin C1 with a bridging ironsulfur cluster at the active site, Biochemistry, 45, 7998–8008.PubMedGoogle Scholar
  164. 164.
    Berndt, C., Hudemann, C., Hanschmann, E.-M., Axelsson, R., Holmgren, A., and Lillig, C. H. (2007) How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2? Antioxid. Redox Signal., 9, 151–157.PubMedGoogle Scholar
  165. 165.
    Mitra, S., and Elliott, S. J. (2009) Oxidative disassembly of the [2Fe-2S] cluster of human Grx2 and redox regulation in the mitochondria, Biochemistry, 48, 3813–3815.PubMedGoogle Scholar
  166. 166.
    Johansson, C., Kavanagh, K. L., Gileadi, O., and Oppermann, U. (2007) Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria, J. Biol. Chem., 282, 3077–3082.PubMedGoogle Scholar
  167. 167.
    Zhang, H., Du, Y., Zhang, X., Lu, J., and Holmgren, A. (2014) Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal, Antioxid. Redox Signal., in press.Google Scholar
  168. 168.
    Muhlenhoff, U., Molik, S., Godoy, J. R., Uzarska, M. A., Richter, N., Seubert, A., Zhang, Y., Stubbe, J., Pierrel, F., Herrero, E., Lillig, C. H., and Lill, R. (2010) Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster, Cell Metab., 12, 373–385.PubMedGoogle Scholar
  169. 169.
    Linares, G. R., Xing, W., Govoni, K. E., Chen, S. T., and Mohan, S. (2009) Glutaredoxin 5 regulates osteoblast apoptosis by protecting against oxidative stress, Bone, 44, 795–804.PubMedGoogle Scholar
  170. 170.
    Xia, T. H., Bushweller, J. H., Sodano, P., Billeter, M., Bjornberg, O., Holmgren, A., and Wuthrich, K. (1992) NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins, Protein Sci., 1, 310–321.PubMedCentralPubMedGoogle Scholar
  171. 171.
    Wang, Y., Amegbey, G., and Wishart, D. S. (2004) Solution structures of reduced and oxidized bacteriophage T4 glutaredoxin, J. Biomol. NMR, 29, 85–90.PubMedGoogle Scholar
  172. 172.
    Bushweller, J. H., Billeter, M., Holmgren, A., and Wuthrich, K. (1994) The nuclear magnetic resonance solution structure of the mixed disulfide between Escherichia coli glutaredoxin (C14S) and glutathione, J. Mol. Biol., 235, 1585–1597.PubMedGoogle Scholar
  173. 173.
    Anathy, V., Aesif, S. W., Guala, A. S., Havermans, M., Reynaert, N. L., Ho, Y. S., Budd, R. C., and Janssen-Heininger, Y. M. (2009) Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas, J. Cell Biol., 184, 241–252.PubMedCentralPubMedGoogle Scholar
  174. 174.
    Huang, Z., Pinto, J. T., Deng, H., and Richie, J. P., Jr. (2008) Inhibition of caspase-3 activity and activation by protein glutathionylation, Biochem. Pharmacol., 75, 2234–2244.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Allen, E. M., and Mieyal, J. J. (2012) Protein-thiol oxidation and cell death: regulatory role of glutaredoxins, Antioxid. Redox Signal., 17, 1748–1763.PubMedCentralPubMedGoogle Scholar
  176. 176.
    Song, J. J., Rhee, J. G., Suntharalingam, M., Walsh, S. A., Spitz, D. R., and Lee, Y. J. (2002) Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2, J. Biol. Chem., 277, 46566–46575.PubMedGoogle Scholar
  177. 177.
    Sparaco, M., Gaeta, L. M., Santorelli, F. M., Passarelli, C., Tozzi, G., Bertini, E., Simonati, A., Scaravilli, F., Taroni, F., Duyckaerts, C., Feleppa, M., and Piemonte, F. (2009) Friedreich’s ataxia: oxidative stress and cytoskeletal abnormalities, J. Neurol. Sci., 287, 111–118.PubMedGoogle Scholar
  178. 178.
    Johansson, M., and Lundberg, M. (2007) Glutathionylation of beta-actin via a cysteinyl sulfenic acid intermediary, BMC Biochem., 8, 26.PubMedCentralPubMedGoogle Scholar
  179. 179.
    Shi, Q., Xu, H., Kleinman, W. A., and Gibson, G. E. (2008) Novel functions of the α-ketoglutarate dehydrogenase complex may mediate diverse oxidant-induced changes in mitochondrial enzymes associated with Alzheimer’s disease, Biochim. Biophys. Acta, 1782, 229–238.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Di Domenico, F., Cenini, G., Sultana, R., Perluigi, M., Uberti, D., Memo, M., and Butterfield, D. A. (2009) Glutathionylation of the pro-apoptotic protein p53 in Alzheimer’s disease brain: implications for AD pathogenesis, Neurochem. Res., 34, 727–733.PubMedCentralPubMedGoogle Scholar
  181. 181.
    Sampathkumar, R., Balasubramanyam, M., Sudarslal, S., Rema, M., Mohan, V., and Balaram, P. (2005) Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes subjects with microangiopathy, Clin. Biochem., 38, 892–899.PubMedGoogle Scholar
  182. 182.
    Shelton, M. D., Kern, T. S., and Mieyal, J. J. (2007) Glutaredoxin regulates nuclear factor κB and intercellular adhesion molecule in Muller cells: model of diabetic retinopathy, J. Biol. Chem., 282, 12467–12474.PubMedGoogle Scholar
  183. 183.
    Craghill, J., Cronshaw, A. D., and Harding, J. J. (2004) The identification of a reaction site of glutathione mixed disulphide formation on ΓS-crystallin in human lens, Biochem. J., 379, 595–600.PubMedCentralPubMedGoogle Scholar
  184. 184.
    Zhang, S., Chai, F. Y., Yan, H., Guo, Y., and Harding, J. J. (2008) Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats, Mol. Vision, 14, 862–870.Google Scholar
  185. 185.
    Velu, C. S., Niture, S. K., Doneanu, C. E., Pattabiraman, N., and Srivenugopal, K. S. (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress, Biochemistry, 46, 7765–7780.PubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. V. Kalinina
    • 1
  • N. N. Chernov
    • 1
  • M. D. Novichkova
    • 1
  1. 1.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations