Skip to main content
Log in

Expression of hp1 family genes and their plausible role in formation of flamenco phenotype in D. melanogaster

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Results of expression analysis of transcription of the flamenco locus that controls transposition of the mobile genetic element gypsy, RNA interference system genes ago3, zuc, aub, and HP1 heterochromatin protein family genes hp1a, hp1b, hp1c, hp1d (rhino), and hp1e in D. melanogaster SS strain mutant on the flamenco gene are presented. We show that the number of transcripts in the SS strain that are formed in the flamenco locus is unchanged in some freely chosen points, and this is different from the wild-type strain where a decreased number of transcripts is observed, which clearly is a result of processing of the flamenco locus primary transcript, a predecessor of piRNA. At the same time, expression of genes of the RNA interference system is not affected, but there is a reduced level of hp1d gene expression in ovary tissue. We suggest that the hp1d gene product is directly or indirectly involved in the flamenco locus primary transcript processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HP1:

heterochromatin protein 1

MGE:

mobile genetic element

piRNA:

small mRNA associated with protein PIWI

References

  1. Lippman, Z., and Martienssen, R. (2004) The role of RNA interference in heterochromatic silencing, Nature, 431, 364–370.

    Article  CAS  PubMed  Google Scholar 

  2. Moshkovich, N., and Lei, E. P. (2010) HP1 recruitment in the absence of argonaute proteins in Drosophila, PLoS Genet., 6, e1000880.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kwon, S. H., and Workman, J. L. (2011) HP1c casts light on dark matter, Cell Cycle, 10, 625–630.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, D. H., Li, Y., Shin, D.-H., Sang, A. Y., Bang, S.-Y., Eun Kyung Park, Han, J.-W., and Kwon, S. H. (2013) DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila, Biochem. Biophys. Res. Commun., 434, 820–828.

    Article  CAS  PubMed  Google Scholar 

  5. Klattenhoff, C., Xi, H., Li, C., Lee, S., Xu, J., Khurana, J. S., Zhang, F., Schultz, N., Koppetsch, B. S., Nowosielska, A., Seitz, H., Zamore, P. D., Weng, Z., and Theurkauf, W. E. (2009) The Drosophila HP1 homolog rhino is required for transposon silencing and piRNA production by dualstrand clusters, Cell, 138, 1137–1149.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Vermaak, D., and Malik, H. S. (2009) Multiple roles for heterochromatin protein 1 genes in Drosophila, Ann. Rev. Genet., 43, 467–492.

    Article  CAS  PubMed  Google Scholar 

  7. Castel, S. E., and Martienssen, R. A. (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond, Nat. Rev. Genet., 14, 100–112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Minervini, C. F., Marsano, R. M., Casieri, P., Fanti, L., Caizzi, R., Pimpinelli, S., Rocchi, M., and Viggiano, L. (2007) Heterochromatin protein 1 interacts with 5′UTR of transposable element ZAM in a sequence-specific fashion, Gene, 393, 1–10.

    Article  CAS  PubMed  Google Scholar 

  9. Brower-Toland, B., Findley, S. D., Jiang, L., Liu, L., Yin, H., Dus, M., Zhou, P., Elgin, S. C. R., and Lin, H. (2007) Drosophila PIWI associates with chromatin and interacts directly with HP1a, Genes Dev., 21, 2300–2311.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nefedova, L. N., Romanova, N. I., and Kim, A. I. (2007) Peculiarities of DIP1 gene structural organization in strains of Drosophila melanogaster, mutant at the flamenco gene, Genetika, 43, 71–78.

    Google Scholar 

  11. Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G. J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, 128, 1089–1103.

    Article  CAS  PubMed  Google Scholar 

  12. Mevel-Ninio, M., Pelisson, A., Kinder, J., Campos, A. R., and Bucheton, A. (2007) The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis, Genetics, 175, 1615–1624.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Desset, S., Meignin, C., Dastugue, B., and Vaury, C. (2003) COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster, Genetics, 164, 501–509.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Prud’homme, N., Kim, A., Bucheton, A., and Pelisson, A. (2001) Characterization of the flamenco region of the Drosophila melanogaster genome, Genetics, 158, 701–713.

    PubMed Central  PubMed  Google Scholar 

  15. Nefedova, L. N., Urusov, F. A., Romanova, N. I., Shmelkova, A. O., and Kim, A. I. (2012) Investigation of transcriptional and transposon activity of the Tirant retrotransposon in Drosophila melanogaster strains, mutant at the flamenco locus, Genetika, 48, 1089–1096.

    CAS  Google Scholar 

  16. Goriaux, C., Desset, S., Renaud, Y., Vaury, C., and Brasset, E. (2014) Transcriptional properties and splicing of the flamenco piRNA cluster, EMBO Rep., 15, 411–418.

    Article  CAS  PubMed  Google Scholar 

  17. Urusov, F. A., Nefedova, L. N., Lavrenov, A. R., Romanova, N. I., and Kim, A. I. (2013) Genetic and molecular analysis of loci complementation, Vavilov Zh. Genet. Selek., 17, 381–389.

    Google Scholar 

  18. Kellum, R., and Alberts, B. M. (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos, J. Cell Sci., 108, 1419–1431.

    CAS  PubMed  Google Scholar 

  19. Nishimasu, H., Ishizu, H., Saito, K., Fukuhara, S., Kamatani, M. K., Bonnefond, L., Matsumoto, N., Nishizawa, T., Nakanaga, K., Aoki, J., Ishitani, R., Siomi, H., Siomi, M. C., and Nureki, O. (2012) Structure and function of Zucchini endoribonuclease in piRNA biogenesis, Nature, 491, 284–287.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kim.

Additional information

Original Russian Text © A. R. Lavrenov, L. N. Nefedova, N. I. Romanova, A. I. Kim, 2014, published in Biokhimiya, 2014, Vol. 79, No. 11, pp. 1554–1560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrenov, A.R., Nefedova, L.N., Romanova, N.I. et al. Expression of hp1 family genes and their plausible role in formation of flamenco phenotype in D. melanogaster . Biochemistry Moscow 79, 1267–1272 (2014). https://doi.org/10.1134/S0006297914110157

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914110157

Key words

Navigation