Skip to main content
Log in

Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Heat shock leads to oxidative stress. Excessive ROS (reactive oxygen species) accumulation could be responsible for expression of genes of heat-shock proteins or for cell death. It is known that in isolated mammalian mitochondria high protonic potential on the inner membrane actuates the production of ROS. Changes in viability, ROS content, and mitochondrial membrane potential value have been studied in winter wheat (Triticum aestivum L.) cultured cells under heat treatment. Elevation of temperature to 37–50°C was found to induce elevated ROS generation and increased mitochondrial membrane potential, but it did not affect viability immediately after treatment. More severe heat exposure (55–60°C) was not accompanied by mitochondrial potential elevation and increased ROS production, but it led to instant cell death. A positive correlation between mitochondrial potential and ROS production was observed. Depolarization of the mitochondrial membrane by the protonophore CCCP inhibited ROS generation under the heating conditions. These data suggest that temperature elevation leads to mitochondrial membrane hyperpolarization in winter wheat cultured cells, which in turn causes the increased ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

DCF:

2′,7′-dichlorofluorescein

FDA:

fluorescein diacetate

H2DCF·DA:

2′,7′-dichlorofluorescin diacetate

JC-1:

5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide

PI:

propidium iodide

ROS:

reactive oxygen species

References

  1. Kreslavsky, V. D., Los, D. A., Allakhverdiev, S. I., and Kuznetsov, V. V. (2012) Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 59, 141–154.

    Article  Google Scholar 

  2. Rhoads, D. M., Umbach, A. L., Subbaiah, C. C., and Siedow, J. N. (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling, Plant Physiol., 141, 357–366.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Møller, I. M. (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species, Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 561–591.

    Article  PubMed  Google Scholar 

  4. Kolupaev, Y. E., Oboznyi, A. I., and Shvidenko, N. V. (2013) Role of hydrogen peroxide in generation of a signal inducing heat tolerance of wheat seedlings, Russ. J. Plant Physiol., 60, 227–234.

    Article  CAS  Google Scholar 

  5. Miller, G., and Mittler, R. (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants, Ann. Bot., 98, 279–288.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Volkov, R. A., Panchuk, I. I., Mullineaux, P. M., and Schoffl, F. (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis, Plant Mol. Biol., 61, 733–746.

    Article  CAS  PubMed  Google Scholar 

  7. Konigshofer, H., Tromballa, H. W., and Loppert, H. G. (2008) Early events in signaling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production, Plant Cell Environ., 31, 1771–1780.

    Article  CAS  PubMed  Google Scholar 

  8. Locato, V., Gadaleta, C., De Gara, L., and De Pinto, M. C. (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate, Plant Cell Environ., 31, 1606–1619.

    Article  CAS  PubMed  Google Scholar 

  9. Vacca, R. A., de Pinto, M. C., Valenti, D., Passarella, S., Marra, E., and De Gara, L. (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells, Plant Physiol., 134, 1100–1112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zhang, L., Li, Y., Xing, D., and Gao, C. (2009) Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis, Exp. Bot., 60, 2073–2091.

    Article  CAS  Google Scholar 

  11. Schwarzlander, M., Logan, D. C., Johnston, I. G., Jones, N. S., Meyer, A. J., Fricker, M. D., and Sweetlove, L. J. (2012) Pulsing of membrane potential in individual mitochondria: a stress-induced mechanism to regulate respiratory bioenergetics in Arabidopsis, Plant Cell, 24, 1188–1201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zorov, D. B., Isaev, N. K., Plotnikov, E. Y., Zorova, L. D., Stelmashook, E. V., Vasileva, A. K., Arkhangelskaya, A. A., and Khrjapenkova, T. G. (2007) The mitochondrion as janus bifrons, Biochemistry (Moscow), 72, 1115–1126.

    Article  CAS  Google Scholar 

  13. Smith, C., Barthet, M., Melino, V., Smith, P., Day, D., and Soole, K. (2011) Alterations in the mitochondrial alternative NAD(P)H dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress, Plant Cell Physiol., 52, 1222–1237.

    Article  CAS  PubMed  Google Scholar 

  14. Gleason, C., Huang, S., Thatcher, L. F., Foley, R. C., Anderson, C. R., Carroll, A. J., Millar, A. H., and Singh, K. B. (2011) Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense, Proc. Natl. Acad. Sci. USA, 108, 10768–10773.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Skulachev, V. P. (1998) Uncoupling: new approaches to an old problem of bioenergetics, Biochim. Biophys. Acta, 1363, 100–124.

    Article  CAS  PubMed  Google Scholar 

  16. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.

    Article  CAS  PubMed  Google Scholar 

  17. Suski, J. M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J., and Wieckowski, M. R. (2012) Relation between mitochondrial membrane potential and ROS formation, Methods Mol. Biol., 810, 183–205.

    Article  CAS  PubMed  Google Scholar 

  18. Pyatrikas, D. V., Rikhvanov, E. G., Fedoseeva, I. V., Varakina, N. N., Rusaleva, T. M., Tauson, E. L., Stepanov, A. V., Borovskii, G. B., and Voinikov, V. K. (2014) Mitochondrial retrograde regulation of HSP101 expression in Arabidopsis thaliana under heat stress and amiodarone action, Russ. J. Plant Physiol., 61, 80–89.

    Article  CAS  Google Scholar 

  19. Szilagyi, G., Simon, L., Koska, P., Telek, G., and Nagy, Z. (2006) Visualization of mitochondrial membrane potential and reactive oxygen species via double staining, Neurosci. Lett., 399, 206–209.

    Article  CAS  PubMed  Google Scholar 

  20. FAO Statistical Yearbook — World, Food and Agriculture (2012) Food and Agricultural Organization of the United Nations, Rome, Italy (www.fao.org).

  21. Dorofeev, N. V., Peshkova, A. A., and Voinikov, V. K. (2003) Winter Wheat in the Irkutsk Region [in Russian], Art Press, Irkutsk.

    Google Scholar 

  22. Kolupaev, Y. Y., and Karpets, Y. V. (2009) Salicylic acid and plants resistance to abiotic stressors, Byul. Kharkiv Nat. Agr. Univ., 17, 19–39.

    Google Scholar 

  23. Fedyaeva, A. V., Stepanov, A. V., Pobezhimova, T. P., and Rikhvanov, E. G. (2014) Synthesis of HSP and the death of cell cultures of plants under thermal influence, Byul. Irkutsk Gos. Tekh. Univ., 2, 167–171.

    Google Scholar 

  24. Nishizawa, A., Yabuta, Y., Yoshida, E., Maruta, T., Yoshimura, K., and Shigeoka, S. (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress, Plant J., 48, 535–547.

    Article  CAS  PubMed  Google Scholar 

  25. Swidzinski, J. A., Sweetlove, L. J., and Leaver, C. J. (2002) A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana, Plant J., 30, 431–446.

    Article  CAS  PubMed  Google Scholar 

  26. Locato, V., Gadaleta, C., De Gara, L., and De Pinto, M. C. (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate, Plant Cell Environ., 31, 1606–1619.

    Article  CAS  PubMed  Google Scholar 

  27. Doyle, S. M., Diamond, M., and McCabe, P. F. (2010) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures, Exp. Bot., 61, 473–482.

    Article  CAS  Google Scholar 

  28. Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast, J. Cell. Biol., 168, 257–269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sun, J., Zhang, C. L., Deng, S. R., Lu, C. F., Shen, X., Zhou, X. Y., Zheng, X. J., Hu, Z. M., and Chen, S. L. (2012) An ATP signaling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica, Plant Cell Environ., 35, 893–916.

    Article  PubMed  Google Scholar 

  30. Larkindale, J., and Vierling, E. (2008) Core genome responses involved in acclimation to high temperature, Plant Physiol., 146, 748–761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fedoseeva, I. V., Pjatricas, D. V., Varakina, N. N., Rusaleva, T. M., Stepanov, A. V., Rikhvanov, E. G., Borovskii, G. B., and Voinikov, V. K. (2012) Effect of amiodarone on thermotolerance and Hsp104p synthesis in the yeast Saccharomyces cerevisiae, Biochemistry (Moscow), 77, 78–86.

    Article  CAS  Google Scholar 

  32. Balogh, G., Horvath, I., Nagy, E., Hoyk, Z., Benko, S., Bensaude, O., and Vigh, L. (2005) The hyperfluidization of mammalian cell membrane acts as a signal to initiate the heat shock protein response, FEBS Lett., 272, 6077–6086.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedyaeva.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 11, pp. 1476–1486.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-149, September 7, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, A.V., Stepanov, A.V., Lyubushkina, I.V. et al. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Biochemistry Moscow 79, 1202–1210 (2014). https://doi.org/10.1134/S0006297914110078

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914110078

Key words

Navigation