Skip to main content
Log in

Properties of hybrid hybrid complexes composed of photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides and quantum dots in lecithin liposomes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) can absorb ultraviolet and long-wavelength light energy much more efficiently than natural light-harvesting proteins and transfer the excitation energy to photosynthetic reaction centers (RCs). Inclusion into liposomes of RC membrane pigment-protein complexes combined with QDs as antennae opens new opportunities for using such hybrid systems as a basis for artificial energy-transforming devices that potentially can operate with greater efficiency and stability than devices based only on biological components. RCs from Rhodobacter sphaeroides and QDs with fluorescence maximum at 530 nm (CdSe/ZnS with hydrophilic covering) were embedded in lecithin liposomes by extrusion of a solution of multilayer lipid vesicles through a polycarbonate membrane or by dialysis of lipids and proteins dispersed with excess detergent. The dimensions of the resulting hybrid systems were evaluated using dynamic light scattering and by transmission cryoelectron microscopy. The efficiency of RC and QD interaction within the liposomes was estimated using fluorescence excitation spectra of the photoactive bacteriochlorophyll of the RCs and by measuring the fluorescence decay kinetics of the QDs. The functional activity of the RCs in hybrid complexes was fully maintained, and their stability was even increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BChl:

bacteriochlorophyll

BPheo:

bacteriopheophytin

D-D:

detergent- and dialysis-based method of liposomes preparation

RC:

photosynthetic reaction center

QDs:

quantum dots

References

  1. Hu, X., Ritz, T., Damjanovic, A., Autenrieth, F., and Schulten, K. (2002) Photosynthetic apparatus of purple bacteria, Quart. Rev. Biophys., 35, 1–62.

    Article  CAS  Google Scholar 

  2. Yoder, L. M., Cole, A. G., and Sension, R. J. (2002) Structure and function in the isolated reaction center complex of photosystem II: energy and charge transfer dynamics and mechanism, Photosynth. Res., 72, 147–158.

    Article  CAS  PubMed  Google Scholar 

  3. Busch, A., and Hippler, M. (2011) The structure and function of eukaryotic photosystem I, Biochim. Biophys. Acta, 1807, 864–877.

    Article  CAS  PubMed  Google Scholar 

  4. McConnell, I., Li, G., and Brudvig, G. W. (2010) Energy conversion in natural and artificial photosynthesis, Chem. Biol., 17, 434–447.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Leatherdale, C. A., Woo, W.-K., Mikulec, F. V., and Bawendi, M. G. (2002) On the absorption cross section of CdSe nanocrystal quantum dots, J. Phys. Chem. B, 106, 7619–7622.

    Article  CAS  Google Scholar 

  6. Oleynikov, V. A., Sukhanova, A. V., and Nabiev, I. R. (2007) Fluorescent semiconductor nanocrystals for biology and medicine, Ros. Nanotekhnol., 2, 160–173.

    Google Scholar 

  7. Micic, O. I., Cheong, H. M., Fu, H., Zunger, A., Sprague, J. R., Mascarenhas, A., and Nozik, A. J. (1997) Sizedependent spectroscopy of InP quantum dots, J. Phys. Chem. B, 101, 4904–4912.

    Article  CAS  Google Scholar 

  8. Gerion, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet, D., Weiss, S., and Alivisatos, A. P. (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B, 105, 8861–8871.

    Article  CAS  Google Scholar 

  9. Pons, T., Medintz, I. L., Sapsford, K. E., Higashiya, S., Grimes, A. F., English, D. S., and Mattoussi, H. (2007) On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles, Nano Lett., 7, 3157–3164.

    Article  CAS  PubMed  Google Scholar 

  10. Medintz, I. L., and Mattoussi, H. (2009) Quantum dotbased resonance energy transfer and its growing application in biology, Phys. Chem. Chem. Phys., 11, 17–45.

    Article  CAS  PubMed  Google Scholar 

  11. Nabiev, I., Rakovich, A., Sukhanova, A., Lukashev, E., Zagidullin, V., Paschenko, V., Rakovich, Y. P., Donegan, J. F., Rubin, A. B., and Govorov, A. O. (2010) Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers, Angew. Chem., 49, 7217–7221.

    Article  Google Scholar 

  12. Maksimov, E. G., Lukashev, E. P., Seifullina, N. Kh., Nizova, G. V., and Paschenko, V. Z. (2013) Photophysical properties of hybrid complexes consisting of quantum dots and reaction centers of the purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films, Ros. Nanotekhnol., 8, 11–17.

    Google Scholar 

  13. Borissevitch, I. E., Parra, G. G., Zagidullin, V. E., Lukashev, E. P., Knox, P. P., Paschenko, V. Z., and Rubin, A. B. (2013) Cooperative effects in CdSe/ZnS-PEGOH quantum dot luminescence quenching by a water soluble porphyrin, J. Luminesc., 134, 83–87.

    Article  CAS  Google Scholar 

  14. Gennis, P. (1997) Biomembranes: Molecular Structure and Functions [Russian translation], Mir, Moscow.

    Google Scholar 

  15. Nyholm, T. K. M., Ozdirekcan, S., and Killian, J. A. (2007) How protein transmembrane segments sense the lipid environment, Biochemistry, 46, 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  16. Sandermannr, H., Jr. (1978) Regulation of membrane enzymes by lipids, Biochim. Biophys. Acta, 515, 209–237.

    Article  Google Scholar 

  17. Latruffe, N., Berrez, J. M., and el Kebbaj, M. S. (1986) Lipid-protein interactions in biomembranes studied through the phospholipids specificity of D-beta-hydroxybutyrate dehydrogenase, Biochimie, 68, 481–491.

    Article  CAS  PubMed  Google Scholar 

  18. Lee, S. Y., Lee, A., Chen, J. Y., and MacKinnon, R. (2005) Structure of the KvAP voltage-dependent K+-channel and its dependence on the lipid membrane, Proc. Natl. Acad. Sci. USA, 102, 15441–15446.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Onishi, J. C., and Niederman, P. (1982) Rhodopseudomonas sphaeroides membranes: alterations in phospholipid composition in aerobically and phototrophically grown cells, J. Bacteriol., 149, 831–839.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Benning, C. (2004) Membrane lipids in anoxygenic photosynthetic bacteria, Adv. Photosynth. Respir., 6, 83–101.

    Article  Google Scholar 

  21. Camara-Artigas, A., Brune, D., and Allen, J. P. (2002) Interactions between lipids and bacterial reaction centers determined by crystallography, Proc. Natl. Acad. Sci. USA, 99, 11055–11060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Agostiano, A., Milano, F., and Trotta, M. (2005) Trapping of a long-living charge separated state of photosynthetic reaction centers in proteoliposomes of negatively charged phospholipids, Photosynth. Res., 83, 53–61.

    Article  CAS  PubMed  Google Scholar 

  23. Milano, F., Dorogi, M., Szebenyi, K., Nagy, L., Maroti, P., Varo, G., Giotta, L., Agostiano, A., and Trotta, M. (2007) Enthalpy/entropy driven activation of the first interquinone electron transfer in bacterial photosynthetic reaction centers embedded in vesicles of physiologically important phospholipids, Bioelectrochemistry, 70, 18–22.

    Article  CAS  PubMed  Google Scholar 

  24. Berg, A. I., Knox, P. P., Kononenko, A. A., Frolov, E. N., Khrymova, I. N., Rubin, A. B., Likhtenstein, G. I., Goldansky, V. I., Parak, F., Bukl, M., and Messbauer, P. (1979) Conformational regulation of functional activity in photosynthetic membranes of purple bacteria, Mol. Biol., 13, 81–89.

    CAS  Google Scholar 

  25. Kotelnikov, A. I., Likhtenstein, G. I., Fogel, V. R., Kochetkov, V. V., Knox, P. P., Kononenko, A. A., Grishanova, N. P., and Rubin, A. B. (1983) Intramolecular dynamics and electron transfer in photosynthetic reaction centers. The study by luminescence method, Mol. Biol., 17, 846–855.

    CAS  Google Scholar 

  26. Kononenko, A. A., Knox, P. P., Chamorovsky, S. K., Rubin, A. B., Likhtenstein, G. I., Krupyansky, Y. F., Suzdalev, I. P., and Goldansky, V. I. (1986) Electron transfer and intramolecular dynamics of photosynthetic reaction centers, Khim. Fiz., 5, 795–804.

    CAS  Google Scholar 

  27. Zakharova, N. I., and Churbanova, I. Y. (2000) Methods for preparation of reaction centers of photosynthesizing purple bacteria, Biochemistry (Moscow), 65, 149–159.

    CAS  Google Scholar 

  28. Bellare, J. R., Davis, H. T., Scriven, L. E., and Talmon, Y. (1988) Controlled environment vitrification system: an improved sample preparation technique, J. Electron Microsc. Tech., 10, 87–111.

    Article  CAS  PubMed  Google Scholar 

  29. Frederik, P. M., Stuart, M. C., Bomans, P. H., Busing, W. M., Burger, K. N., and Verkleij, A. J. (1991) Perspective and limitations of cryo-electron microscopy. From model systems to biological specimens, J. Microsc., 161, 253–262.

    Article  CAS  PubMed  Google Scholar 

  30. Milano, F., Italiano, F., Trotta, M., and Agostiano, A. (2009) Characterization of RC-proteoliposomes at different RC/lipid ratios, Photosynth. Res., 100, 107–112.

    Article  CAS  PubMed  Google Scholar 

  31. Iba, K., Takamiya, K., Arata, H., Toh, Y., and Nishimura, M. (1984) Transmembrane orientation of reaction centers in proteoliposomes from Rhodopseudomonas sphaeroides, J. Biochem., 96, 1823–1830.

    CAS  PubMed  Google Scholar 

  32. Shan, G.-Y., Li, D., Feng, L.-Y., Kong, X.-G., Liu, Y.-C., Bai, Y.-B., Li, T.-J., and Sun, J.-Z. (2005) Encapsulation of CdSe/ZnSe quantum dots by liposome complexes, Chin. J. Chem., 23, 1688–1692.

    Article  CAS  Google Scholar 

  33. Al-Jamal, W. T., Al-Jamal, K. T., Bomans, P. H., Frederik, P. M., and Kostarelos, K. (2008) Functionalized-quantumdot-liposome hybrids as multimodal nanoparticles for cancer, Small, 4, 1406–1415.

    Article  CAS  PubMed  Google Scholar 

  34. Generalov, R., Kavaliauskiene, S., Westrom, S., Chen, W., Kristensen, S., and Juzenas, P. (2011) Entrapment in phospholipid vesicles quenches photoactivity of quantum dots, Int. J. Nanomed., 6, 1875–1888.

    CAS  Google Scholar 

  35. Lancaster, C. R. D., Michel, H., Honig, B., and Gunner, M. R. (1996) Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis, Biophys. J., 70, 2469–2492.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Miksovska, J., Maroti, P., Tandori, J., Schiffer, M., Hanson, D. K., and Sebban, P. (1996) Distant electrostatic interactions modulate the free energy level of QA — in the photosynthetic reaction center, Biochemistry, 35, 15411–15417.

    Article  CAS  PubMed  Google Scholar 

  37. Paddock, M. L., Rongey, S. H., McPherson, P. H., Juth, A., Feher, G., and Okamura, M. Y. (1994) Pathway of proton transfer in bacterial reaction centers: role of aspartate-L213 in proton transfers associated with reduction of quinone to dihydroquinone, Biochemistry, 33, 134–145.

    Article  Google Scholar 

  38. Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy, Kluwer.

    Book  Google Scholar 

  39. Krasilnikov, P. M., Knox, P. P., Lukashev, E. P., Paschenko, V. Z., Churbanova, I. Y., Shaitan, K. V., and Rubin, A. B. (2000) Acceleration of the reaction of photooxidized bacteriochlorophyll and of reduced primary quinone in reaction centers of Rb. sphaeroides at T > 300 K, Dokl. Akad. Nauk, 375, 828–830.

    CAS  Google Scholar 

  40. Krasilnikov, P. M., Mamonov, P. A., Knox, P. P., Paschenko, V. Z., and Rubin, A. B. (2007) The influence of hydrogen bonds on electron transfer rate in photosynthetic RCs, Biochim. Biophys. Acta, 1767, 541–549.

    Article  CAS  PubMed  Google Scholar 

  41. Krasilnikov, P. M., Knox, P. P., and Rubin, A. B. (2009) Relaxation mechanism of molecular systems containing hydrogen bonds and free energy temperature dependence of reaction of charges recombination within Rhodobacter sphaeroides RC, Photochem. Photobiol. Sci., 8, 181–195.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Lukashev.

Additional information

Original Russian Text © V. E. Zagidullin, E. P. Lukashev, P. P. Knox, N. Kh. Seifullina, O. S. Sokolova, E. V. Pechnikova, H. Lokstein, V. Z. Paschenko, 2014, published in Biokhimiya, 2014, Vol. 79, No. 11, pp. 1452–1463.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-145, Published on September 7, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagidullin, V.E., Lukashev, E.P., Knox, P.P. et al. Properties of hybrid hybrid complexes composed of photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides and quantum dots in lecithin liposomes. Biochemistry Moscow 79, 1183–1191 (2014). https://doi.org/10.1134/S0006297914110054

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914110054

Key words

Navigation