Skip to main content
Log in

Aging is a simple deprivation syndrome driven by a quasi-programmed preventable and reversible drift of control system set points due to inappropriate organism-environment interaction

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

There are two well-known but opposing concepts of the reason for aging. The first supposes that senescence is programmed similarly to the genetic program of development from a zygote up to a mature organism. Genetically determined senile wasting is thought to be associated with the necessity to renovate the population to ensure its adaptation and survival. According to the concept of the stochastic aging (due to accumulation of occasional error and damage), there is no built-in program of aging. There is only a program of development up to the state of maturity, and then the organism should be able to maintain itself limitlessly. However, although the efficiency of repair systems is assumed to be rather high, it is less than 100%. Just this has to result in aging because of accumulation of various errors. We have continued and developed another approach that considers both programmed and stochastic concepts to be incorrect. Aging is a simple deprivation syndrome driven by preventable and even reversible drifts of control systems set points because of an inappropriate “organism-environment” interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khalyavkin, A. V. (1989) Experimental dates on the possibility for approaching to non-aging regimens of life activity, in Mechanisms of Aging Process [in Russian], Nauka, Moscow, pp 53–60.

    Google Scholar 

  2. Frolkis, V. V., and Muradian, Kh. K. (1991) Life Span Prolongation, CRC Press, Boca Raton, Florida.

    Google Scholar 

  3. Khalyavkin, A. V. (2013) Phenoptosis as genetically determined aging influenced by signals from the environment, Biochemistry (Moscow), 78, 1001–1005.

    Article  CAS  Google Scholar 

  4. Olovnikov, A. M. (2003) Redusome hypothesis of aging and biological age control during individual development, Biochemistry (Moscow), 68, 2–33.

    Article  CAS  Google Scholar 

  5. Olovnikov, A. M. (2003) Redusome aging: Comment, Usp. Gerontol., 12, 28–45.

    CAS  Google Scholar 

  6. Anisimov, V. N., Bakeeva, L. T., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roschina, N. V., Rybina, O. Y., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsibul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence, Biochemistry (Moscow), 73, 1329–1342.

    Article  CAS  Google Scholar 

  7. Tomas-Loba, A., Flores, I., Fernandez-Marcos, P. J., Cayuela, M. L., Maraver, A., Tejera, A., Borras, C., Matheu, A., Klatt, P., Flores, J. M., Vina, J., Serrano, M., and Blasco, M. A. (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice, Cell, 135, 609–622.

    Article  PubMed  CAS  Google Scholar 

  8. Khalyavkin, A. V. (2000) Telomere, telomerase and causes of aging, Gerontological approaches to care for the aged in the 21st century, in Proc. 6th Asia/Oceania Regional Congr. of Gerontology (Seoul, June 8–11, 1999), Seoul, pp. 253–257.

    Google Scholar 

  9. Gorbunova, V., and Seluanov, A. (2009) Coevolution of telomerase activity and body mass in mammals: from mice to beavers, Mech. Ageing Dev., 130, 3–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Tang, D. G., Tokumoto, Y. M, Apperly, J. A., Lloyd, A. C., and Raff, M. C. (2001) Lack of replicative senescence in cultured rat oligodendrocyte precursor cells, Science, 291, 868–871.

    Article  PubMed  CAS  Google Scholar 

  11. Wiesner, M., Zentz, C., Mayr, C., Wimmer, R., Hammerschmidt, W., Zeidler, R., and Moosmann, A. (2008) Conditional immortalization of human B cells by CD40 ligation, PLoS One, 3, e1464.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Manz, R. A., and Radbruch, A. (2002) Plasma cells for a lifetime?. Eur. J. Immunol., 32, 923–927.

    Article  PubMed  CAS  Google Scholar 

  13. Carlson, M. E., Suetta, C., Conboy, M. J., Aagaard, P., Mackey, A., Kjaer, M., and Conboy, I. (2009) Molecular aging and rejuvenation of human muscle stem cells, EMBO Mol. Med., 1, 381–391.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Mayack, S. R., Shadrach, J. L., Kim, F. S., and Wagers, A. J. (2010) Systemic signals regulate ageing and rejuvenation of blood stem cell niches, Nature, 463, 495–500.

    Article  PubMed  CAS  Google Scholar 

  15. Katsimpardi, L., Litterman, N. K., Schein, P. A., Miller, C. M., Loffredo, F. S., Wojtkiewicz, G. R., Chen, J. W., Lee, R. T., Wagers, A. J., and Rubin, L. L. (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors, Science, 344, 630–634.

    Article  PubMed  CAS  Google Scholar 

  16. Sinha, M., Jang, Y. C., Oh, J., Khong, D., Wu, E. Y., Manohar, R., Miller, C., Regalado, S. G., Loffredo, F. S., Pancoast, J. R., Hirshman, M. F., Lebowitz, J., Shadrach, J. L., Cerletti, M., Kim, M. J., Serwold, T., Goodyear, L. J., Rosner, B., Lee, R. T., and Wagers, A. J. (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle, Science, 344, 649–652.

    Article  PubMed  CAS  Google Scholar 

  17. Khokhlov, A. N. (1988) Cell Proliferation and Aging [in Russian], VINITI, Moscow.

    Google Scholar 

  18. Khokhlov, A. N. (2013) Does aging needs its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to research for anti-aging factors, Curr. Aging Sci., 6, 14–20.

    Article  PubMed  CAS  Google Scholar 

  19. Khalyavkin, A. V., and Blokhin, A. V. (1994) Long-term limitation of cell proliferation in culture does not lead to their proliferative aging, Tsitologiya, 36, 465–468.

    Google Scholar 

  20. Blokhin, A. V., and Khalyavkin, A. V. (1995) Influence of long-term limitation of cell proliferation on the cell cycle duration, Cell Prolif., 28, 431–435.

    Article  PubMed  CAS  Google Scholar 

  21. Hayashi, J., Ohta, S., Kagawa, Y., Kondo, H., Kaneda, H., Yonekawa, H., Takai, D., and Miyabayashi, S. (1994) Nuclear but not mitochondrial genome involvement in human age-related mitochondrial dysfunction. Functional integrity of mitochondrial dysfunction, J. Biol. Chem., 269, 6878–6883.

    PubMed  CAS  Google Scholar 

  22. Isobe, K., Ito, S., Hosaka, H., Iwamura, Y., Kondo, H., Kagawa, Y., and Hayashi, J. (1998) Nuclear-recessive mutations of factors involved in mitochondrial translation are responsible for age-related respiration deficiency of human skin fibroblasts, J. Biol. Chem., 273, 4601–4606.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, S., Jeong, S.-Y., Lim, W.-C., Kim, S., Park, J. J., Sun, X., Youle, R. J., and Cho, H. (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence, J. Biol. Chem., 282, 22977–22983.

    Article  PubMed  CAS  Google Scholar 

  24. Ames, B. N. (2010) Optimal micronutrients delay mitochondrial decay and age-associated diseases, Mech. Ageing Dev., 131, 473–479.

    Article  PubMed  CAS  Google Scholar 

  25. Gomes, A. P., Price, N. L., Ling, A. J., Moslehi, J. J., Montgomery, M. K., Rajman, L., White, J. P., Teodoro, J. S., Wrann, C. D., Hubbard, B. P., Sinclair, D. A., Mercken, E. M., Palmeira, C. M., de Cabo, R., Rolo, A. P., Turner, N., Bell, L., and Sinclair, D. A. (2013) Declining NAD (+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging, Cell, 155, 1624–1638.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Hubbard, B. P., and Sinclair, D. A. (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases, Trends Pharmacol. Sci., 35, 146–154.

    Article  PubMed  CAS  Google Scholar 

  27. Vaupel, J. W., Baudisch, A., Doelling, M., Roach, D. A., and Gampe, J. (2004) The case for negative senescence, Theor. Popul. Biol., 65, 339–351.

    Article  PubMed  Google Scholar 

  28. Jones, O. R., Scheuerlein, A., Salquero-Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khalyavkin.

Additional information

Original Russian Text © A. V. Khalyavkin, V. N. Krutko, 2014, published in Biokhimiya, 2014, Vol. 79, No. 10, pp. 1392–1395.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalyavkin, A.V., Krutko, V.N. Aging is a simple deprivation syndrome driven by a quasi-programmed preventable and reversible drift of control system set points due to inappropriate organism-environment interaction. Biochemistry Moscow 79, 1133–1135 (2014). https://doi.org/10.1134/S0006297914100150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914100150

Key words

Navigation