Skip to main content
Log in

Decrease in ATP biosynthesis and dysfunction of biological membranes. Two possible key mechanisms of phenoptosis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Metabolic syndrome is extremely prevalent in the world and can be considered as one of main factors leading to accelerated aging and premature death. This syndrome may be closely linked with age-related disruptions in hypothalamic-pituitary system function, which perhaps represent a trigger mechanism of development of endocrine and cardiovascular pathologies. Age-related elevation of the sensitivity threshold of the hypothalamus to regulatory signals in association with low mobility and excessive diet trigger a cascade of biochemical reactions that might be used for activation of programmed death of the organism — phenoptosis. Accumulation of fatty acids in a cell and resulting lipotoxicity include resistance to insulin and leptin, endoplasmic reticulum stress, uncoupling of oxidation and phosphorylation, and dysfunction of biological membranes. Decrease in ATP synthesis is correlated with accumulation of calcium ions in cells, dysfunction of mitochondria, and increasing apoptotic activity. Age-related activation of mTOR (which is greatly influenced by excess energy substrates) has deleterious impact on one of the main mechanisms of cell defense by which defective mitochondria are replaced: mitophagy and biogenesis of mitochondria will be suppressed, and this will increase in greater degree mitochondrial dysfunction and oxidative stress. Fatty acid-induced inflammation will increase activity of nuclear factor NF-κB, the well-known stimulator of age-related pathologies. The final stage of phenoptosis can be represented by endothelium dysfunction related with oxidative stress, insulin resistance, and the most prevalent cardiovascular pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

FAs:

fatty acids

FFAs:

free fatty acids

LPO:

lipid peroxidation

PL:

phospholipid

ROS:

reactive oxygen species

References

  1. Anisimov, V. N. (2008) Molecular and Physiological Mechanisms of Aging [in Russian], 2nd Edn., Nauka, St. Petersburg.

    Google Scholar 

  2. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weisman’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  3. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  4. Dontsov, V. I., Krut’ko, V. N., Mrikaev, B. M., and Ukhanov, S. V. (2006) Active oxygen species as a system: their importance in physiology, pathology and natural aging, Trudy ISA RAN, 19, 50–69.

    Google Scholar 

  5. El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B. (1993) WAF1, a potential mediator of p53 tumor suppression, Cell, 75, 817–825.

    PubMed  CAS  Google Scholar 

  6. Lushnikov, E. F., Abrosimov, A. Yu., Gabai, V. L., Saenko, A. S., and Dorosevich, A. E. (2001) Cell Death (Apoptosis) [in Russian], Meditsina, Moscow.

    Google Scholar 

  7. Dulic, V., Kaufmann, W. K., Wilson, S. J., Tlsty, T. D., Lees, E., Harper, J. W., Elledge, S. J., and Reed, S. I. (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest, Cell, 76, 1013–1023.

    PubMed  CAS  Google Scholar 

  8. Alcorta, D. A., Xiong, Y., Phelps, D., Hannon, G., Beach, D., and Barrett, J. C. (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts, Proc. Natl. Acad. Sci. USA, 93, 13742–13747.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Chumakov, P. M. (2007) Versatile functions of p53 protein in multicellular organism, Biochemistry (Moscow), 72, 1399–1421.

    CAS  PubMed Central  Google Scholar 

  10. Ushakov, A. V., Russel, M. V., and Borisov, A. B. (2005) Disruptions of energetic metabolism in cardiomyocytes in pathogenesis of ischemic damage of myocardium in patients with diabetes mellitus, Mezhdunarod. Med. Zh., 11, 6–11.

    Google Scholar 

  11. Skulachev, V. P. (2001) Phenomenon of biological death. Mitochondria, cells and organs: the role of active oxygen species, Soros Obrazovat. Zh., 7, 4–10.

    Google Scholar 

  12. Dilman, V. M. (1982) Big Biological Clock [Russian translation], Znanie, Moscow.

    Google Scholar 

  13. Moraes, J. C., Coope, A., Morari, J., Cintra, D. E., Roman, E. A., Pauli, J. R., Romanatto, T., Carvalheira, J. B., Oliveira, A. L., Saad, M. J., and Velloso, L. A. (2009) High-fat diet induces apoptosis of hypothalamic neurons, PLoS ONE, 4, 1–11.

    Google Scholar 

  14. Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G., Muller, C., Carling, D., and Kahn, B. B. (2002) Leptin stimulates fatty acid oxidation by activating AMP-activated protein kinase, Nature, 15, 339–343.

    Google Scholar 

  15. Unger, R. H. (2005) Hyperleptinemia: protecting the heart from lipid overload, Hypertension, 45, 1031–1034.

    PubMed  CAS  Google Scholar 

  16. Viollet, B., Guigas, B., Leclerc, J., Hebrard, S., Lantier, L., Mounier, R., Andreelli, F., and Foretz, M. (2009) AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives, Acta Physiol. (Oxf.), 196, 81–98.

    CAS  Google Scholar 

  17. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A., and Cantley, L. C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress, Proc. Natl. Acad. Sci. USA, 101, 3329–3335.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling, Nat. Cell Biol., 4, 648–657.

    PubMed  CAS  Google Scholar 

  19. Feng, Z., Hu, W., de Stanchina, E., Teresky, A. K., Jin, S., Lowe, S., and Levine, A. J. (2007) The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways, Cancer Res., 67, 3043–3053.

    PubMed  CAS  Google Scholar 

  20. Levine, A. J., Feng, Z., Mak, T. W., You, H., and Jin, S. (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways, Genes Dev., 20, 267–275.

    PubMed  CAS  Google Scholar 

  21. Minokoshi, Y., and Kahn, B. B. (2003) Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle, Biochem. Soc. Trans., 31, 196–201.

    PubMed  CAS  Google Scholar 

  22. Caro, J. F., Sinha, M. K., Kolaczynski, J. W., Zhang, P. L., and Considine, R. V. (1996) Leptin: the tale of an obesity gene, Diabetes, 45, 1455–1462.

    PubMed  CAS  Google Scholar 

  23. Kishkun, A. A. (2008) Biological Age and Aging. Possibilities for Determination and Ways for Correction [in Russian], GEOTAR-Media, Moscow.

    Google Scholar 

  24. Loh, K., Fukushima, A., Zhang, X., Galic, S., Briggs, D., Enriori, P. J., Simonds, S., Wiede, F., Reichenbach, A., Hauser, C., Sims, N. A., Bence, K. K., Zhang, S., Zhang, Z. Y., Kahn, B. B., Neel, B. G., Andrews, Z. B., Cowley, M. A., and Tiganis, T. (2011) Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance, Cell Metab., 14, 684–699.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Emanuelli, B., Peraldi, P., Filloux, C., Chavey, C., Freidinger, K., Hilton, D., Hotamisligil, G., and Van Obberghen, E. (2001) SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-α in the adipose tissue of obese mice, J. Biol. Chem., 276, 47944–47949.

    PubMed  CAS  Google Scholar 

  26. Hosoi, T., Sasaki, M., Miyahara, T., Hashimoto, C., Matsuo, S., Yoshii, M., and Ozawa, K. (2008) Endoplasmic reticulum stress induces leptin resistance, Mol. Pharmacol., 74, 1610–1619.

    PubMed  CAS  Google Scholar 

  27. Castro, G., Areias, M. F., Weissmann, L., Quaresma, P. G., Katashima, C. K., Saad, M. J., and Prada, P. O. (2013) Diet-induced obesity induces endoplasmic reticulum stress and insulin resistance in the amygdala of rats, FEBS Open Biol., 11, 443–449.

    Google Scholar 

  28. Fukuda, H., Iritani, N., Sugimoto, T., and Ikeda, H. (1999) Transcriptional regulation of fatty acid synthase gene by insulin/glucose, polyunsaturated fatty acid and leptin in hepatocytes and adipocytes in normal and genetically obese rats, Eur. J. Biochem., 260, 505–511.

    PubMed  CAS  Google Scholar 

  29. Benoit, S. C., Clegg, D. J., Seeley, R. J., and Woods, S. C. (2004) Insulin and leptin as adiposity signals, Recent Prog. Horm. Res., 59, 267–285.

    PubMed  CAS  Google Scholar 

  30. Unger, R. H. (2003) Mini-review: Weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome, Endocrinology, 144, 5159–5165.

    PubMed  CAS  Google Scholar 

  31. Perez-Carreras, M. (2003) Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis, Hepatology, 38, 999–1007.

    PubMed  CAS  Google Scholar 

  32. Mannaerts, G. P., Van Veldhoven, P. P., and Casteels, M. (2000) Peroxisomal lipid degradation via β- and α-oxidation in mammals, Cell Biochem. Biophys., 32, 73–87.

    PubMed  CAS  Google Scholar 

  33. Bergamini, C. M., Gambetti, S., Dondi, A., and Cervellati, C. (2004) Oxygen, reactive oxygen species and tissue damage, Curr. Pharm. Des., 10, 1611–1626.

    PubMed  CAS  Google Scholar 

  34. Horton, J. D., Goldstein, J. L., and Brown, M. S. (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver, J. Clin. Invest., 109, 1125–1131.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Robertson, G., Leclercq, I., and Farrell, G. C. (2001) Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P450 enzymes and oxidative stress, Am. J. Physiol. Gastrointest. Liver Physiol., 281, 1135–1139.

    Google Scholar 

  36. Caldwell, S. H. (1999) Mitochondrial abnormalities in nonalcoholic steatohepatitis, J. Hepatol., 31, 430–434.

    PubMed  CAS  Google Scholar 

  37. Lesnefsky, E. J., Chen, Q., Slabe, T. J., Stoll, M. S., Minkler, P. E., Hassan, M. O., Tandler, B., and Hoppel, C. L. (2004) Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin, Am. J. Physiol. Heart Circ. Physiol., 287, 258–267.

    Google Scholar 

  38. Skulachev, V. P. (1998) Alternative ways of cell respiration, Soros Obrazovat. Zh., 8, 2–7.

    Google Scholar 

  39. Sudakov, N. P., Nikiforov, S. B., Konstantinov, Yu. M., Yakubov, L. A., Novikova, N. A., and Karamysheva, A. N. (2006) Mechanisms of participation of mitochondria in the development of pathological processes, accompanied by ischemia and reperfusion, Byul. VSNTs SO RAMN, 5, 332–336.

    Google Scholar 

  40. Solmi, R., Pallotti, F., Rugolo, M., Genova, M. L., Estornell, E., Ghetti, P., Pugnaloni, A., Biagini, G., Rizzoli, C., and Lenaz, G. (1994) Lack of major mitochondrial bioenergetic changes in cultured skin fibroblasts from aged individuals, Biochem. Mol. Biol. Int., 33, 477–484.

    PubMed  CAS  Google Scholar 

  41. Ozawa, T. (1997) Oxidative damage and fragmentation of mitochondrial DNA in cellular apoptosis: a review, Biosci. Rep., 17, 237–250.

    PubMed  CAS  Google Scholar 

  42. Johnson, M. L., Robinson, M. M., and Nair, K. S. (2013) Skeletal muscle aging and the mitochondrion, Trends Endocrinol. Metab., 24, 247–256.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Lee, H. C., and Wei, Y. H. (2012) Mitochondria and aging, Adv. Exp. Med. Biol., 942, 311–327.

    PubMed  CAS  Google Scholar 

  44. Wang, D., Wei, Y., and Pagliassotti, M. J. (2006) Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis, Endocrinology, 147, 943–951.

    PubMed  CAS  Google Scholar 

  45. Shulpekova, Yu. O. (2012) Pathogenetic importance of lipids in nonalcoholic fat disease of the liver, Ross. Zh. Gastroenterol. Gepatol. Koloproktol., 1, 45–56.

    Google Scholar 

  46. Czaja, M. J. (2003) The future of GI and liver research: editorial perspectives. III. JNK/AP-1 regulation of hepatocyte death, Am. J. Physiol. Gastrointest. Liver Physiol., 284, 875–879.

    Google Scholar 

  47. Cazanave, S., and Gores, G. (2010) Mechanisms and clinical implications of hepatocyte lipoapoptosis, Clin. Lipidol., 5, 71–85.

    PubMed  PubMed Central  Google Scholar 

  48. Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H. P., and Ron, D. (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1, Science, 287, 664–666.

    PubMed  CAS  Google Scholar 

  49. Yamamoto, K., Ichijo, H., and Korsmeyer, S. J. (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M, Mol. Cell Biol., 19, 8469–8478.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Malhi, H., Bronk, S. F., Werneburg, N. W., and Gores, G. (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis, J. Biol. Chem., 281, 12093–12101.

    PubMed  CAS  Google Scholar 

  51. Yamaguchi, H., and Wang, H. G. (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells, J. Biol. Chem., 279, 45495–45502.

    PubMed  CAS  Google Scholar 

  52. Xu, C., Bailly-Maitre, B., and Reed, J. C. (2005) Endoplasmic reticulum stress: cell life and death decisions, J. Clin. Invest., 115, 2656–2664.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Vasyuk, Yu. A., Kulikov, K. G., Kudryakov, O. N., Krikunova, O. V., and Sadulaeva, I. A. (2007) Secondary mitochondrial dysfunction at acute coronary syndrome, Rational Pharmacother. Cardiol., 1, 41–47.

    Google Scholar 

  54. Aleksandrov, A. (2005) Clinical horizons of cardioprotection: “calcium trace” of trimetazidine, Consilium Med., 7, 757–763.

    Google Scholar 

  55. Bolli, R. (1990) Mechanism of myocardial “stunning, Circulation, 82, 723–738.

    PubMed  CAS  Google Scholar 

  56. Bolli, R. (1998) Causative role of oxy-radicals in myocardial stunning: a proven hypothesis, Basic Res. Cardiol., 93, 156–162.

    PubMed  CAS  Google Scholar 

  57. Sun, J. Z., Tang, X. L., Park, S. W., Qiu, Y., Turrens, J. F., and Bolli, R. (1996) Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs, J. Clin. Invest., 97, 562–576.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Novitsky, V. V., Ryazantseva, N. V., Stepovaya, E. A., Fedorova, T. S., Kravets, E. B., Ivanov, V. V., Zhavoronok, T. V., Chasovskikh, N. Yu., Chudakova, O. M., Butusova, V. N., and Yakovleva, N. M. (2006) Molecular disturbances of erythrocyte membrane in pathology of different genesis represent a typical reaction of the organism: contours of the problem, Byul. Sib. Med., 2, 62–69.

    Google Scholar 

  59. Masoro, E. J., Katz, M. S., and McMahan, C. A. (1989) Evidence for the glycation hypothesis of aging from the food-restricted rodent model, J. Gerontol., 44, 20–22.

    Google Scholar 

  60. Zalevskaya, A. G., and Patrakeeva, E. M. (2008) Metabolic regulation and cAMP-dependent protein kinase (AMPK): enemy or ally? Sakharnyi Diabet, 4, 12–17.

    Google Scholar 

  61. Vladimirov, Yu. A. (2000) Biological membranes and nonprogrammed cell death, Soros Obrazovat. Zh., 6, 2–9.

    Google Scholar 

  62. Wood, W. G., Schroeder, F., Igbavboa, U., Avdulov, N. A., and Chochina, S. V. (2002) Brain membrane cholesterol domains, aging and amyloid β-peptides, Neurobiol. Aging, 23, 685–694.

    PubMed  CAS  Google Scholar 

  63. Tereshina, E. V. (2007) Role of fatty acids in the development of age-related oxidative stress, Uspekhi Gerontol., 20, 59–65.

    Google Scholar 

  64. Titov, V. N. (2012) Development in phylogeny, etiology and pathogenesis of insulin resistance syndrome. Differences from type 2 diabetes, Vestnik RAMN, 4, 65–73.

    Google Scholar 

  65. Kotyk, A., and Yanachek, K. (1980) Membrane Transport [Russian translation], Mir, Moscow.

    Google Scholar 

  66. Brownlee, M. (1995) Advanced protein glycosylation in diabetes and aging, Annu. Rev. Med., 46, 223–234.

    PubMed  CAS  Google Scholar 

  67. Banerjee, T., and Kuypers, F. A. (2004) Reactive oxygen species and phosphatidylserine externalization in murine sickle red cells, Br. J. Haematol., 124, 391–402.

    PubMed  CAS  Google Scholar 

  68. Wahid, S. T., Marshall, S. M., and Thomas, T. H. (2001) Increased platelet and erythrocyte external cell membrane phosphatidylserine in type 1 diabetes and microalbuminuria, Diabetes Care, 24, 2001–2003.

    PubMed  CAS  Google Scholar 

  69. Titov, V. N. (2000) Common features of atherosclerosis and inflammation: specificity of atherosclerosis as inflammation process (hypothesis), Klin. Lab. Diagn., 4, 3–10.

    PubMed  Google Scholar 

  70. Titov, V. N. (1999) Disruption of saturated fatty acids transport into cells in pathogenesis of essential hypertension (review), Klin. Lab. Diagn., 2, 3–9.

    PubMed  Google Scholar 

  71. Pamplona, R., Portero-Otin, M., Ruiz, C., Gredilla, R., Herrero, A., and Barja, G. (2000) Double bond content of phospholipids and lipid peroxidation negatively correlate with maximum longevity in the heart of mammals, Mech. Ageing Dev., 112, 169–183.

    PubMed  CAS  Google Scholar 

  72. Illarioshkin, S. N. (2012) Disruptions of cellular energetic in nervous system diseases, Nervnye Bolezni, 1, 34–38.

    Google Scholar 

  73. Vasenina, E. E., and Levin, O. S. (2013) Oxidative stress in pathogenesis of neurodegenerative diseases: possibilities of a therapy, Sovrem. Terap. Psikhiatr. Nevrol., 3/4, 39–46.

    Google Scholar 

  74. Sudakov, N. P., Byvaltsev, V. A., Nikiforov, S. B., Sorokovikov, S. B., Klimenkov, I. V., and Konstantinov, Yu. M. (2010) Dysfunction of mitochondria in neurodegenerative diseases, Zh. Nevrol. Psikhiatr., 9, 87–91.

    Google Scholar 

  75. Whitmer, R. A., Gunderson, E. P., Barrett-Connor, E., Quesenberry, C. P., Jr., and Yaffe, K. (2005) Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study, BMJ, 330, 1360.

    PubMed  PubMed Central  Google Scholar 

  76. Obeid, L. M., and Hannun, Y. A. (2003) Ceramide, stress, and a “LAG” in aging, Sci. Aging Knowledge Environ., 39, PE27.

    Google Scholar 

  77. Obeid, L. M., and Hannun, Y. A. (2008) Principles of bioactive lipid signaling: lessons from sphingolipids, Nat. Rev. Mol. Cell. Biol., 9, 139–150.

    PubMed  Google Scholar 

  78. Patil, S., Melrose, J., and Chan, C. (2007) Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons, Eur. J. Neurosci., 26, 2131–2141.

    PubMed  PubMed Central  Google Scholar 

  79. Babenko, N. A., Semenova, Ya. A., and Kharchenko, V. S. (2009) Influence of fat-enriched diet on the level of sphingolipids and cognitive functions in old rats, Neirofiziologiya, 41, 309–315.

    Google Scholar 

  80. Canaan, A., DeFuriab, J., Perelmanc E., Schultzd, V., Seaya, M., Tucke, D., Flavellf, R. A., Snyderg, M. P., Obinb, M. S., and Weissman, S. M. (2014) Extended lifespan and reduced adiposity in mice lacking the FAT10 gene, PNAS, 111, 5313–5318.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Titov, V. N. (2011) Biological basics of evolution in cardiology — paracrine communities, cardiovascular system, biological functions and biological reactions, Ross. Kardiol. Zh., 6, 76–89.

    Google Scholar 

  82. Fessler, M. B., Rudel, L. L., and Brown, M. (2009) Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome, Curr. Opin. Lipidol., 20, 379–385.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Lee, C. G., Ren, J., Cheong, I. S., Ban, K. H., Ooi, L. L., Yong, T. S., Kan, A., Nuchprayoon, I., Jin, R., Lee, K. H., Choti, M., and Lee, L. A. (2003) Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers, Oncogene, 22, 2592–2603.

    PubMed  CAS  Google Scholar 

  84. Liao, C. Y., Rikke, B. A., Johnson, T. E., Gelfond, J. A., Diaz, V., and Nelson, J. F. (2011) Fat maintenance is a predictor of the murine lifespan response to dietary restriction, Aging Cell, 10, 629–639.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Sanz, P. (2008) AMP-activated protein kinase: structure and regulation, Curr. Protein Pept. Sci., 9, 478–492.

    PubMed  CAS  Google Scholar 

  86. Sparks, L. M., Xie, H., Koza, R. A., Mynatt, R., Hulver, M. W., Bray, G. A., and Smith, S. R. (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle, Diabetes, 54, 1926–1933.

    PubMed  CAS  Google Scholar 

  87. Kowald, A. (1999) The mitochondrial theory of aging: do damaged mitochondria accumulate by delayed degradation? Exp. Gerontol., 34, 605–612.

    PubMed  CAS  Google Scholar 

  88. De Grey, A. D. (1997) A proposed refinement of the mitochondrial free radical theory of aging, Bioessays, 19, 161–166.

    PubMed  Google Scholar 

  89. Klionsky, D. J. (2007) Autophagy: from phenomenology to molecular understanding in less than a decade, Nat. Rev. Mol. Cell Biol., 8, 931–937.

    PubMed  CAS  Google Scholar 

  90. Mounier, R., Lantier, L., Leclerc, J., Sotiropoulos, A., Foretz, M., and Viollet, B. (2011) Antagonistic control of muscle cell size by AMPK and mTORC1, Cell Cycle, 10, 2640–2646.

    PubMed  CAS  Google Scholar 

  91. Pes, G. M., Lio, D., Carru, C., Deiana, L., Baggio, G., Franceschi, C., Ferrucci, L., Oliveri, F., Scola, L., Crivello, A., Candore, G., Colonna-Romano, G., and Caruso, C. (2004) Association between longevity and cytokine gene polymorphisms. A study in Sardinian centenarians, Aging Clin. Exp. Res., 16, 244–248.

    PubMed  CAS  Google Scholar 

  92. Van Exel, E., Gussekloo, J., de Craen, A. J., Frolich, M., Bootsma-van der Wiel, A., and Westendorp, R. G. (2002) Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus study, Diabetes, 51, 1088–1092.

    PubMed  Google Scholar 

  93. Chen, C. C., and Manning, A. M. (1996) TGF-β1, IL-10 and IL-4 differentially modulate the cytokine-induced expression of IL-6 and IL-8 in human endothelial cells, Cytokine, 8, 58–65.

    PubMed  CAS  Google Scholar 

  94. Corradin, S. B., Fasel, N., Buchmuller-Rouiller, Y., Ransijn, A., Smith, J., and Mauel, J. (1993) Induction of macrophage nitric oxide production by interferon-Γ and tumor necrosis factor-α is enhanced by interleukin-10, Eur. J. Immunol., 23, 2045–2048.

    PubMed  CAS  Google Scholar 

  95. Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., Li, B., Liu, G., and Cai, D. (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH, Nature, 497, 211–216.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Cai, D., and Liu, T. (2012) Inflammatory cause of metabolic syndrome via brain stress and NF-κB, Aging (Albany NY), 4, 98–115.

    CAS  Google Scholar 

  97. Purkayastha, S., Zhang, G., and Cai, D. (2011) Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-β and NF-κB, Nat. Med., 17, 883–887.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Burnstock, G. (2006) Historical review: ATP as a neurotransmitter, Trends Pharmacol. Sci., 27, 166–176.

    PubMed  CAS  Google Scholar 

  99. Burnstock, G. (2007) Physiology and pathophysiology of purinergic neurotransmission, Physiol. Rev., 87, 659–797.

    PubMed  CAS  Google Scholar 

  100. Blagosklonny, M. V., and Hall, M. N. (2009) Growth and aging: a common molecular mechanism, Aging (Albany NY), 1, 357–362.

    CAS  Google Scholar 

  101. Blagosklonny, M. V. (2013) M(o)TOR of aging: MTOR as a universal molecular hypothalamus, Aging (Albany NY), 5, 490–494.

    CAS  Google Scholar 

  102. Qiang, W., Weiqiang, K., Qing, Z., Pengju, Z., and Yi, L. (2007) Aging impairs insulin-stimulated glucose uptake in rat skeletal muscle via suppressing AMPKα, Exp. Mol. Med., 39, 535–543.

    PubMed  CAS  Google Scholar 

  103. Schaeffler, A., Gross, P., Buettner, R., Bollheimer, C., Buechler, C., Neumeier, M., Kopp, A., Schoelmerich, J., and Falk, W. (2009) Fatty acid-induced induction of Tolllike receptor-4/nuclear factor-κB pathway in adipocytes links nutritional signaling with innate immunity, Immunology, 126, 233–245.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Terman, A., Kurz, T., Navratil, M., Arriaga, E. A., and Brunk, U. T. (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging, Antioxid. Redox Signal., 12, 503–535.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Mao, L., and Franke, J. (2013) Hormesis in aging and neurodegeneration — a prodigy awaiting dissection, J. Mol. Sci., 14, 13109–13128.

    Google Scholar 

  106. Mattson, M. (2008) Dietary factors, hormesis and health, Ageing Res. Rev., 7, 43–48.

    PubMed  PubMed Central  Google Scholar 

  107. Marques-Aleixo, I., Oliveira, P. J., Moreira, P. I., Magalhaes, J., and Ascensao, A. (2012) Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms, Prog. Neurobiol., 99, 149–162.

    PubMed  CAS  Google Scholar 

  108. Drapkina, O. M., and Chaparkina, S. O. (2007) Interrelationships between metabolic syndrome, aseptic inflammation and endothelium dysfunction, Ross. Med. Vesti, 3, 67–75.

    Google Scholar 

  109. Sparks, L. M., Xie, H., Koza, R. A., Mynatt, R., Hulver, M. W., Bray, G. A., and Smith, S. R. (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle, Diabetes, 54, 1926–1933.

    PubMed  CAS  Google Scholar 

  110. Patti, M. E., Butte, A. J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M., Saccone, R., Landaker, E. J., Goldfine, A. B., Mun, E., DeFronzo, R., Finlayson, J., Kahn, C. R., and Mandarino, L. J. (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1, Proc. Natl. Acad. Sci. USA, 100, 8466–8471.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rzheshevsky.

Additional information

Original Russian Text © A. V. Rzheshevsky, 2014, published in Biokhimiya, 2014, Vol. 79, No. 10, pp. 1300–1315.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzheshevsky, A.V. Decrease in ATP biosynthesis and dysfunction of biological membranes. Two possible key mechanisms of phenoptosis. Biochemistry Moscow 79, 1056–1068 (2014). https://doi.org/10.1134/S0006297914100071

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914100071

Key words

Navigation