Skip to main content
Log in

Characterization of Rabaptin-5 γ isoform

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Rab GTPases are key regulators of intracellular membrane traffic acting through their effector molecules. Rabaptin-5 is a Rab5 effector in early endosome fusion and connects Rab5- and Rab4-positive membrane compartments owing to its ability to interact with Rab4 GTPase. Recent studies showed that Rabaptin-5 transcript is subjected to extensive alternative splicing, thus resulting in expression of Rabaptin-5 isoforms mostly bearing short deletions in the polypeptide chain. As interactions of a Rab GTPase with different effectors lead to different responses, functional characterization of Rabaptin-5 isoforms becomes an attractive issue. Indeed, it was shown that Rab GTPase effector properties of Rabaptin-5 and its α and δ isoforms are different. This work focused on another Rabaptin-5 isoform, Rabaptin-5γ. Despite its ability to interact with Rab5, endogenously produced Rabaptin-5γ was absent from early endosomes. Rather, it was found to be tightly associated with trans-Golgi network and partially localized to a Rab4-positive membrane compartment. The revealed intracellular localization of Rabaptin-5γ indicates that it is not involved in Rab5-driven events; rather, it functions in other membrane transport steps. Our study signifies the role of alternative splicing in determination of functional activities of Rab effector molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3AT:

3-amino-(1,2,4)-triazole

EGF:

epidermal growth factor

EGFP:

enhanced green fluorescent protein

GAL4AD:

transcriptional activating domain of GAL4 transcription factor

GAL4BD:

GAL4 transcription factor DNA binding domain

GST:

glutathione-S-transferase

mAb:

monoclonal antibody

PBS:

phosphate buffered saline

PFA:

paraformaldehyde

PNS:

post-nuclear supernatant

TGN:

trans-Golgi network

References

  1. Zerial, M., and McBride, H. (2001) Rab proteins as membrane organizers, Nat. Rev. Mol. Cell Biol., 2, 107–117.

    Article  PubMed  CAS  Google Scholar 

  2. Stenmark, H., and Olkkonen, V. M. (2001) The Rab GTPase family, Genome Biol., 2, REVIEWS3007.1-3007.7.

  3. Stenmark, H., Vitale, G., Ullrich, O., and Zerial, M. (1995) Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion, Cell, 83, 423–432.

    Article  PubMed  CAS  Google Scholar 

  4. Horiuchi, H., Lippe, R., McBride, H. M., Rubino, M., Woodman, P., Stenmark, H., Rybin, V., Wilm, M., Ashman, K., Mann, M., and Zerial, M. (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function, Cell, 90, 1149–1159.

    Article  PubMed  CAS  Google Scholar 

  5. Lippe, R., Miaczynska, M., Rybin, V., Runge, A., and Zerial, M. (2001) Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex, Mol. Biol. Cell, 12, 2219–2228.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Korobko, E. V., Palgova, I. V., Kiselev, S. L., and Korobko, I. V. (2006) Apoptotic cleavage of rabaptin-5-like proteins and a model for rabaptin-5 inactivation in apoptosis, Cell Cycle, 5, 1854–1858.

    Article  PubMed  CAS  Google Scholar 

  7. Vitale, G., Rybin, V., Christoforidis, S., Thornqvist, P., McCaffrey, M., Stenmark, H., and Zerial, M. (1998) Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5, EMBO J., 17, 1941–1951.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Pagano, A., Crottet, P., Prescianotto-Baschong, C., and Spiess, M. (2004) In vitro formation of recycling vesicles from endosomes requires adaptor protein-1/clathrin and is regulated by rab4 and the connector rabaptin-5, Mol. Biol. Cell, 15, 4990–5000.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. De Renzis, S., Sonnichsen, B., and Zerial, M. (2002) Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes, Nat. Cell Biol., 4, 124–133.

    Article  PubMed  Google Scholar 

  10. Mattera, R., Arighi, C. N., Lodge, R., Zerial, M., and Bonifacino, J. S. (2003) Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex, EMBO J., 22, 78–88.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Deneka, M., Neeft, M., Popa, I., van Oort, M., Sprong, H., Oorschot, V., Klumperman, J., Schu, P., and van der Sluijs, P. (2003) Rabaptin-5alpha/rabaptin-4 serves as a linker between rab4 and gamma(1)-adaptin in membrane recycling from endosomes, EMBO J., 22, 2645–2657.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Shiba, Y., Takatsu, H., Shin, H. W., and Nakayama, K. (2002) Gamma-adaptin interacts directly with Rabaptin-5 through its ear domain, J. Biochem., 131, 327–336.

    Article  PubMed  CAS  Google Scholar 

  13. Korobko, I. V., Korobko, E. V., and Kiselev, S. L. (2000) The MAK-V protein kinase regulates endocytosis in mouse, Mol. Gen. Genet., 264, 411–418.

    Article  PubMed  CAS  Google Scholar 

  14. Valsdottir, R., Hashimoto, H., Ashman, K., Koda, T., Storrie, B., and Nilsson, T. (2001) Identification of rabaptin-5, rabex-5, and GM130 as putative effectors of rab33b, a regulator of retrograde traffic between the Golgi apparatus and ER, FEBS Lett., 508, 201–209.

    Article  PubMed  CAS  Google Scholar 

  15. Coppola, T., Hirling, H., Perret-Menoud, V., Gattesco, S., Catsicas, S., Joberty, G., Macara, I. G., and Regazzi, R. (2001) Rabphilin dissociated from Rab3 promotes endocytosis through interaction with Rabaptin-5, J. Cell. Sci., 114, 1757–1764.

    PubMed  CAS  Google Scholar 

  16. Ohya, T., Sasaki, T., Kato, M., and Takai, Y. (1998) Involvement of Rabphilin3 in endocytosis through interaction with Rabaptin5, J. Biol. Chem., 273, 613–617.

    Article  PubMed  CAS  Google Scholar 

  17. Neve, R. L., Coopersmith, R., McPhie, D. L., Santeufemio, C., Pratt, K. G., Murphy, C. J., and Lynn, S. D. (1998) The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis, J. Neurosci., 18, 7757–7767.

    PubMed  CAS  Google Scholar 

  18. Xiao, G. H., Shoarinejad, F., Jin, F., Golemis, E. A., and Yeung, R. S. (1997) The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis, J. Biol. Chem., 272, 6097–6100.

    Article  PubMed  CAS  Google Scholar 

  19. Korobko, E. V., Kiselev, S. L., and Korobko, I. V. (2002) Multiple Rabaptin-5-like transcripts, Gene, 292, 191–197.

    Article  PubMed  CAS  Google Scholar 

  20. Korobko, E. V., Smirnova, E. V., Kiselev, S. L., Georgiev, G. P., and Korobko, I. V. (2000) Identification of a new alternative-splicing transcript of Rabaptin-5 interacting with protein kinase MAK-V, Dokl. Biokhim., 370, 1–3.

    CAS  Google Scholar 

  21. Nagelkerken, B., Van Anken, E., Van Raak, M., Gerez, L., Mohrmann, K., Van Uden, N., Holthuizen, J., Pelkmans, L., and Van Der Sluijs, P. (2000) Rabaptin-4, a novel effector of the small GTPase rab4a, is recruited to perinuclear recycling vesicles, Biochem. J., 346, 593–601.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Nishimune, H., Uyeda, A., Nogawa, M., Fujimori, K., and Taguchi, T. (1997) Neurocrescin: a novel neurite-out-growth factor secreted by muscle after denervation, Neuroreport, 8, 3649–3654.

    Article  PubMed  CAS  Google Scholar 

  23. Kawasaki, T., Kunisato, A., Hazama, K., Uyeda, A., and Taguchi, T. (2001) Identification of active regions for neurite outgrowth activity of neurocrescin, Biochem. Biophys. Res. Commun., 281, 761–765.

    Article  PubMed  CAS  Google Scholar 

  24. Korobko, E., Kiselev, S., Olsnes, S., Stenmark, H., and Korobko, I. (2005) The Rab5 effector Rabaptin-5 and its isoform Rabaptin-5delta differ in their ability to interact with the small GTPase Rab4, FEBS J., 272, 37–46.

    Article  PubMed  CAS  Google Scholar 

  25. Korobko, E. V., Kiselev, S. L., and Korobko, I. V. (2006) Dimerization properties of Rabaptin-5 and its isoforms, Biochemistry (Moscow), 71, 1307–1311.

    Article  CAS  Google Scholar 

  26. Stenmark, H., Parton, R. G., Steele-Mortimer, O., Lutcke, A., Gruenberg, J., and Zerial, M. (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis, EMBO J., 13, 1287–1296.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Dean, C. J. (1992) Preparation and testing of monoclonal antibodies to recombinant proteins, in Methods for Molecular Biology, Vol. 10. Immunochemical Protocols (Manson, M. M., ed.) Humana Press, Totowa, NJ, pp. 43–63.

    Google Scholar 

  28. Korobko, I. V., Zavalishina, L. E., Kiselev, S. L., Raikhlin, N. T., and Frank, G. A. (2004) Protein kinase MAK-V/Hunk as a possible diagnostic and prognostic marker of human breast carcinoma, Arkh. Patol., 66, 6–9.

    PubMed  CAS  Google Scholar 

  29. Durfee, T., Becherer, K., Chen, P. L., Yeh, S. H., Yang, Y., Kilburn, A. E., Lee, W. H., and Elledge, S. J. (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit, Genes Dev., 7, 555–569.

    Article  PubMed  CAS  Google Scholar 

  30. Chevray, P. M., and Nathans, D. (1992) Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun, Proc. Natl. Acad. Sci. USA, 89, 5789–5793.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Nakamura, N., Rabouille, C., Watson, R., Nilsson, T., Hui, N., Slusarewicz, P., Kreis, T. E., and Warren, G. (1995) Characterization of a cis-Golgi matrix protein, GM130, J. Cell Biol., 131, 1715–1726.

    Article  PubMed  CAS  Google Scholar 

  32. Lu, L., Tai, G., and Hong, W. (2004) Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network, Mol. Biol. Cell, 15, 4426–4443.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Zhu, G., Zhai, P., Liu, J., Terzyan, S., Li, G., and Zhang, X. C. (2004) Structural basis of Rab5-Rabaptin5 interaction in endocytosis, Nat. Struct. Mol. Biol., 11, 975–983.

    Article  PubMed  CAS  Google Scholar 

  34. Kirchhausen, T. (1999) Adaptors for clathrin-mediated traffic, Annu. Rev. Cell. Dev. Biol., 15, 705–732.

    Article  PubMed  CAS  Google Scholar 

  35. Kreis, T. E., and Pepperkok, R. (1994) Coat proteins in intracellular membrane transport, Curr. Opin. Cell Biol., 6, 533–537.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Korobko.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 9, pp. 1070–1078.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobko, E.V., Kiselev, S.L. & Korobko, I.V. Characterization of Rabaptin-5 γ isoform. Biochemistry Moscow 79, 856–864 (2014). https://doi.org/10.1134/S000629791409003X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791409003X

Key words

Navigation