Skip to main content

Characterization of wound-induced serine protease inhibitor (wip1) genes and proteins in Turkish maize varieties

Abstract

Protease inhibitors (PIs) are generally small proteins that have been identified in plants. The wip1 gene codes for wound-induced protein, which is similar to serine PIs of the Bowman-Birk family (BBIs). In this study, we analyzed 10 wip1 genes of Turkish maize varieties to understand the structure and characteristics of the wip1 genes and proteins in maize. We found that genetic variability of wip1 genes was higher (π: 0.0173) than reported in previous studies. Tajima’s D value was found to be positive (1.73), suggesting over-dominant selection in these loci. According to phylogenetic analysis of wip1 proteins, monocot and dicot BBIs were separated independently, and Turkish varieties were clustered with each other generally. The 3D structures of wip1 proteins indicated that several wip1 proteins had structural divergence in active loops, containing various numbers of cysteine residues ranging between 7 and 9. Particularly, Cys74 was identified in Kocbey and Gozdem varieties, whereas Cys98 was only in the Gozdem variety. Also, a critical serine residue (Ser98) was observed in two varieties — Antbey and Batem Efe. These results can contribute to understanding the role of wip1 genes and corresponding proteins in maize.

This is a preview of subscription content, access via your institution.

Abbreviations

BBI:

Bowman-Birk inhibitor

NCBI:

National Center for Biotechnology Information

NJ:

neighbor-joining method

PI:

protease inhibitor

TMVs:

Turkish maize varieties

References

  1. 1.

    Barrett, A. J., Rawlings, N. D., and Brien, E. A. (2001) The MEROPS database as a protease information system, J. Struct. Biol., 14, 95–102.

    Article  Google Scholar 

  2. 2.

    Joanitti, G. A., Freitas, S. M., and Silva, L. P. (2006) Proteinaceous protease inhibitors: structural features and multiple functional faces, Curr. Enzyme Inhib., 2, 199–217.

    CAS  Article  Google Scholar 

  3. 3.

    Habib, H., and Fazili, K. M. (2007) Plant protease inhibitors: a defense strategy in plants, Biotechnol. Mol. Biol. Rev., 2, 68–85.

    Google Scholar 

  4. 4.

    De Leo, F., Ceci, L. R., Jouanin, L., and Gallerani, R. (2001) Analysis of mustard trypsin inhibitor-2 gene expression in response to developmental or environmental induction, Planta, 212, 710–717.

    PubMed  Article  Google Scholar 

  5. 5.

    Ryan, C. A. (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens, Annu. Rev. Phytopathol., 28, 425–449.

    CAS  Article  Google Scholar 

  6. 6.

    Koiwa, H., Bressan, R. A., and Hasegawa, P. M. (1997) Regulation of protease inhibitors and plant defense, Trends Plant Sci., 2, 379–384.

    Article  Google Scholar 

  7. 7.

    Rawlings, N. D., Tolle, D. P., and Barrett, A. J. (2004) Evolutionary families of peptidase inhibitors, J. Biochem., 378, 705–716.

    CAS  Article  Google Scholar 

  8. 8.

    Mello, M. O., Tanaka, A. S., and Silva-Filho, M. C. (2003) Molecular evolution of Bowman-Birk type proteinase inhibitors in flowering plants, Mol. Phylogenet. Evol., 27, 103–112.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Birk, Y., Gertler, A., and Khalef, S. (1963) A pure trypsin inhibitor from soya beans, Biochem. J., 87, 281–284.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. 10.

    Bowman, D. E. (1946) Differentiation of soybean antitryptic factors, Proc. Soc. Exp. Biol. Med., 63, 547–550.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Odani, S., and Ikenaka, T. (1976) The amino acid sequence of two soybean double headed proteinase inhibitors and evolutionary consideration on the legume proteinase inhibitors, J. Biochem., 80, 641–643.

    CAS  PubMed  Google Scholar 

  12. 12.

    Prakash, B., Selvaraj, S., Murthy, M. R. N., Sreerama, Y. N., Rao, D. R., and Gowda, L. R. (1996) Analysis of the amino acid sequences of plant Bowman-Birk inhibitors, J. Mol. Evol., 42, 560–569.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Tashiro, M., Hashino, K., Shiozaki, M., Ibuki, F., and Maki, Z. (1987) The complete amino acid sequence of rice bran trypsin inhibitor, J. Biochem., 102, 297–306.

    CAS  PubMed  Google Scholar 

  14. 14.

    Tanaka, A. S., Sampaio, M. U., Mentele, R., Auerswald, E. A., and Sampaio, C. A. M. (1996) Sequence of a new Bowman-Birk inhibitor from Torresea acreana seeds and comparison with Torresea cearensis trypsin inhibitor (TcTI2), J. Protein Chem., 15, 553–560.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Tiffin, P., and Gaut, B. S. (2001) Molecular evolution of the wound-induced serine protease inhibitor Wip1 in Zea and related genera, Mol. Biol. Evol., 18, 2092–2101.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Rohrmeier, T., and Lehle, L. (1993) WIP1, a woundinducible gene from maize with homology to Bowman-Birk proteinase inhibitors, Plant Mol. Biol., 22, 783–792.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Anonymous (2005) FAO, Faostat, www.fao.org.

  18. 18.

    Tasdan, K. (2005) Maize Market in Turkey: PhD thesis, Institute of Natural and Applied Sciences University of Cukurova, Adana, Turkey.

    Google Scholar 

  19. 19.

    Ilarslan, R., Kaya, Z., Tolun, A. A., and Bretting, P. K. (2001) Genetic variability among Turkish pop, flint and dent corn (Zea mays L. spp. mays) races: enzyme polymorphism, Euphytica, 122, 171–179.

    CAS  Article  Google Scholar 

  20. 20.

    Okumus, A. (2007) Genetic variation and relationship between Turkish flint maize landraces by RAPD markers, Am. J. Agr. Biol. Sci., 2, 49–53.

    Article  Google Scholar 

  21. 21.

    Comertpay, G., Baloch, F. S., Kilian, B., Ulger, A. C., and Ozkan, H. (2012) Diversity assessment of Turkish maize landraces based on fluorescent labeled SSR markers, Plant Mol. Biol. Rep., 30, 261–274.

    Article  Google Scholar 

  22. 22.

    Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T. (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinformatics, 13, 134.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. 23.

    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673–4680.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. 24.

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731–2739.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. 25.

    Nei, M. (1987) Molecular Evolutionary Genetics, Columbia University, New York.

    Google Scholar 

  26. 26.

    Watterson, G. A. (1975) On the number of segregating sites in genetic models without recombination, Theor. Popul. Biol., 7, 188–193.

    Article  Google Scholar 

  27. 27.

    Tajima, F. (1983) Evolutionary relationship of DNA sequences in finite populations, Genetics, 105, 437–460.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. 28.

    Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 123, 585–595.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. 29.

    Fu, Y., and Li, W. (1993) Statistical tests of neutrality of mutations, Genetics, 133, 693–709.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. 30.

    Librado, P., and Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 25, 1451–1452.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Gasteiger, E. (2005) Protein identification and analysis tools on the ExPASy server, in The Proteomics Protocols Handbook (Walker, J. M., ed.) Humana Press, pp. 571–607.

    Chapter  Google Scholar 

  32. 32.

    Yu, C. S., Lin, C. J., and Hwang, J. K. (2006) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions, Protein Sci., 13, 1402–1406.

    Article  Google Scholar 

  33. 33.

    Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., and Sherlock, G. (2000) Gene ontology: tool for the unification of biology, Nat. Genet., 25, 25–29.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. 34.

    McGuffin, L. J., and Jones, D. T. (2003) Improvement of the GenTHREADER method for genomic fold recognition, Bioinformatics, 19, 874–881.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Buchan, D. W. A., Minneci, F., Nugent, T. C. O., Bryson, K., and Jones, D. T. (2013) Scalable web services for the PSIPRED protein analysis workbench, Nucleic Acids Res., 41, 340–348.

    Article  Google Scholar 

  36. 36.

    Guex, N., Peitsch, M. C., and Schwede, T. (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective, Electrophoresis, 30, 162–173.

    Article  Google Scholar 

  37. 37.

    Moeller, D. A., and Tiffin, P. (2008) Geographic variation in adaptation at the molecular level: a case study of plant immunity genes, Evolution, 62, 3069–3081.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Leng, E. R., Tavcar, A., and Trifunovic, V. (1962) Maize of Southeastern Europe and its potential value in breeding programs elsewhere, Euphytica, 11, 263–272.

    Google Scholar 

  39. 39.

    Qi, R. F., Song, Z. W., and Chi, C. W. (2005) Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application, Acta Biochim. Biophys. Sin., 37, 283–292.

    CAS  PubMed  Google Scholar 

  40. 40.

    Christeller, J. T. (2005) Evolutionary mechanisms acting on proteinase inhibitor variability, FEBS J., 272, 5710–5722.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Bode, W., and Huber, R. (1992) Natural protein proteinase inhibitors and their interaction with proteinases, Eur. J. Biochem., 204, 433–451.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Song, H. K., Kim, Y. S., Yang, J. K., Moon, J., Lee, J. Y., and Suh, S. W. (1999) Crystal structure of a 16 kDa doubleheaded Bowman-Birk trypsin inhibitor from barley seeds at 1.9 resolution, J. Mol. Biol., 293, 1133–1144.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Lin, G. D., Bode, W., Huber, R., Chi, C. W., and Engh, R. A. (1993) The 0.25-nm X-ray structure of the Bowman-Birk-type inhibitor from mung bean in ternary complex with porcine trypsin, Eur. J. Biochem., 212, 549–555.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Brauer, A. B., Domingo, G. J., Cooke, R. M., Matthews, S. J., and Leatherbarrow, R. J. A. (2002) conserved cis peptide bond is necessary for the activity of Bowman-Birk inhibitor protein, Biochemistry, 41, 10608–10615.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Conticello, S. G., Gilad, Y., Avidan, N., Ben-Asher, E., Levy, Z., and Fainzilber, M. (2001) Mechanisms for evolving hypervariability: the case of conopeptides, Mol. Biol. Evol., 18, 120–131.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Laskowski, M., Kato, I., Ardelt, W., Cook, J., Denton, A., Empie, M. W., Kohr, W. J., Park, S. J., Parks, K., Schatzley, B. L., Schoenberger, O. L., Tashiro, M., Vichot, G., Whatley, H. E., Wieczorek, A., and Wieczorek, M. (1987) Ovomucoid third domains from 100 avian species: isolation, sequences, and hypervariability of enzyme-inhibitor contact residues, Biochemistry, 26, 202–222.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Filiz.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 8, pp. 1042–1051.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Filiz, E., Tombuloglu, H., Koc, I. et al. Characterization of wound-induced serine protease inhibitor (wip1) genes and proteins in Turkish maize varieties. Biochemistry Moscow 79, 836–844 (2014). https://doi.org/10.1134/S0006297914080124

Download citation

Key words

  • protease inhibitors
  • wound-induced protein
  • Bowman-Birk family
  • Turkish maize