Skip to main content
Log in

Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group a protein on interaction with DNA intermediates of nucleotide excision repair

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the inter-action of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E ≫ K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Flu-dUMP:

5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-2′-deoxyuridine 5′-monophosphate

5-I-dUMP:

5-iodo-2′-deoxyuridine 5′-monophosphate

MDB-domain:

minimal DNA binding domain

NER:

nucleotide excision repair

RPA:

replication protein A

XPA:

xeroderma pigmentosum factor A

References

  1. Bootsma, D., Kraemer, K. H., Cleaver, J. E., and Hoeijmakers, J. H. J. (1998) in The Genetic Basis of Human Cancer (Vogelstein, B., and Kinzler, K. W., eds.) McGraw-Hill Book Co., N. Y., pp. 245–274.

  2. Cleaver, J. E., and Kraemer, K. H. (1989) in The Metabolic Basis of Inherited Disease (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.) McGraw-Hill Book Co., N. Y., pp. 2949–2971.

  3. Reardon, J. T., and Sancar, A. (2003) Genes Dev., 17, 2539–2551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kesseler, K. J., Kaufmann, W. K., Reardon, J. T., Elston, T. C., and Sancar, A. (2007) J. Theor. Biol., 249, 361–375.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Park, C. J., and Choi, B. S. (2006) FEBS J., 273, 1600–1608.

    Article  CAS  PubMed  Google Scholar 

  6. Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O., and Lavrik, O. I. (2010) Nucleic Acids Res., 38, 8083–8094.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Li, L., Lu, X., Peterson, C. A., and Legerski, R. J. (1995) Mol. Cell Biol., 15, 5396–5402.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Li, L., Elledge, S. J., Peterson, C. A., Bales, E. S., and Legerski, R. J. (1994) Proc. Natl. Acad. Sci. USA, 91, 5012–5016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Li, L., Peterson, C. A., Lu, X., and Legerski, R. J. (1995) Mol. Cell Biol., 15, 1993–1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Park, C. H., Mu, D., Reardon, J. T., and Sancar, A. (1995) J. Biol. Chem., 270, 4896–4902.

    Article  CAS  PubMed  Google Scholar 

  11. Miyamoto, I., Miura, N., Niwa, H., Miyazaki, J., and Tanaka, K. (1992) J. Biol. Chem., 267, 12182–121877.

    CAS  PubMed  Google Scholar 

  12. Yang, Z. G., Liu, Y., Mao, L. Y., Zhang, J. T., and Zou, Y. (2002) Biochemistry, 41, 13012–13020.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kuraoka, I., Morita, E. H., Saijo, M., Matsuda, T., Morikawa, K., Shirakawa, M., and Tanaka, K. (1996) Mutat. Res., 362, 87–95.

    Article  PubMed  Google Scholar 

  14. Buchko, G. W., Ni, S., Thrall, B. D., and Kennedy, M. A. (1998) Nucleic Acids Res., 26, 2779–2788.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ikegami, T., Kuraoka, I., Saijo, M., Kodo, N., Kyogoku, Y., Morikawa, K., Tanaka, K., and Shirakawa, M. (1998) Nat. Struct. Biol., 5, 701–706.

    Article  CAS  PubMed  Google Scholar 

  16. Buchko, G. W., Isern, N. G., Spicer, L. D., and Kennedy, M. A. (2001) Mutat. Res., 486, 1–10.

    Article  CAS  PubMed  Google Scholar 

  17. Camenisch, U., Dip, R., Schumacher, S. B., Schuler, B., and Naegeli, H. (2006) Nat. Struct. Mol. Biol., 13, 278–284.

    Article  CAS  PubMed  Google Scholar 

  18. Cleaver, J. E., and States, J. C. (1997) Biochem. J., 328, 1–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn.

    Google Scholar 

  21. Riedl, T., Hanaoka, F., and Egly, J. M. (2003) EMBO J., 22, 5293–5303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rademakers, S., Volker, M., Hoogstraten, D., Nigg, A. L., Mone, M. J., van Zeeland, A. A., Hoeijmakers, J. H., Houtsmuller, A. B., and Vermeulen, W. (2003) Mol. Cell Biol., 23, 5755–5767.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Volker, M., Mone, M. J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J. H., van Driel, R., van Zeeland, A. A., and Mullenders, L. H. (2001) Mol. Cell., 8, 213–224.

    Article  CAS  PubMed  Google Scholar 

  24. Sugasawa, K., Ng, J. M., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. (1998) Mol. Cell, 2, 223–232.

    Article  CAS  PubMed  Google Scholar 

  25. Evans, E., Moggs, J. G., Hwang, J. R., Egly, J. M., and Wood, R. D. (1997) EMBO J., 16, 6559–6573.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Jones, C. J., and Wood, R. D. (1993) Biochemistry, 32, 12096–12104.

    Article  CAS  PubMed  Google Scholar 

  27. Buschta-Hedayat, N., Buterin, T., Hess, M. T., Missura, M., and Naegeli, H. (1999) Proc. Natl. Acad. Sci. USA, 96, 6090–6095.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wakasugi, M., and Sancar, A. (1999) J. Biol. Chem., 274, 18759–18768.

    Article  CAS  PubMed  Google Scholar 

  29. Maltseva, E. A., Rechkunova, N. I., Gillet, L. C., Petruseva, I. O., Scharer, O. D., and Lavrik, O. I. (2007) Biochim. Biophys. Acta, 1770, 781–789.

    Article  CAS  PubMed  Google Scholar 

  30. Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O., Silnikov, V. N., Zatsepin, T. S., Oretskaya, T. S., Scharer, O. D., and Lavrik, O. I. (2008) Biochemistry (Moscow), 73, 886–896.

    Article  CAS  Google Scholar 

  31. Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J. H., and Lavrik, O. I. (2013) J. Biol. Chem., 288, 10936–10947.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tapias, A., Auriol, J., Forget, D., Enzlin, J. H., Scharer, O. D., Coin, F., Coulombe, B., and Egly, J. M. (2004) J. Biol. Chem., 279, 19074–19083.

    Article  CAS  PubMed  Google Scholar 

  33. Nakano, T., Katafuchi, A., Shimizu, R., Terato, H., Suzuki, T., Tauchi, H., Makino, K., Skorvaga, M., van Houten, B., and Ide, H. (2005) Nucleic Acids Res., 33, 2181–2191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Camenisch, U., Dip, R., Vitanescu, M., and Naegeli, H. (2007) DNA Repair, 6, 1819–1828.

    Article  CAS  PubMed  Google Scholar 

  35. Dip, R., Camenisch, U., and Naegeli, H. (2004) DNA Repair, 3, 1409–1423.

    Article  CAS  PubMed  Google Scholar 

  36. Hey, T., Lipps, G., and Krauss, G. (2001) Biochemistry, 40, 2901–2910.

    Article  CAS  PubMed  Google Scholar 

  37. Meisenheimer, K. M., and Koch, T. H. (1997) Crit. Rev. Biochem. Mol. Biol., 32, 101–140.

    Article  CAS  PubMed  Google Scholar 

  38. Missura, M., Buterin, T., Hindges, R., Hubscher, U., Kasparkova, J., Brabec, V., and Naegeli, H. (2001) EMBO J., 20, 3554–3564.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Tsodikov, O. V., Ivanov, D., Orelli, B., Staresincic, L., Shoshani, I., Oberman, R., Scharer, O. D., Wagner, G., and Ellenberger, T. (2007) EMBO J., 26, 4768–4776.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Rechkunova.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 6, pp. 693–704.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltseva, E.A., Krasikova, Y.S., Naegeli, H. et al. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group a protein on interaction with DNA intermediates of nucleotide excision repair. Biochemistry Moscow 79, 545–554 (2014). https://doi.org/10.1134/S000629791406008X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791406008X

Key words

Navigation