Skip to main content
Log in

A unique disulfide bridge of the thermophilic xylanase syxyn11 plays a key role in its thermostability

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Based on the hyperthermostable family 11 xylanase (EvXyn11TS) gene sequence (EU591743), the gene Syxyn11 encoding a thermophilic xylanase SyXyn11 was synthesized with synonymous codons biasing towards Pichia pastoris. The homology alignment of primary structures among family 11 xylanases revealed that, at their N-termini, only SyXyn11 contains a disulfide bridge (Cys5–Cys32). This to some extent implied the significance of the disulfide bridge of SyXyn11 to its thermostability. To confirm the correlation between the N-terminal disulfide bridge and thermostability, a SyXyn11C5T-encoding gene, Syxyn11 C5T, was constructed by mutating the Cys5 codon of Syxyn11 to Thr5. Then, the genes for the recombinant xylanases, reSyXyn11 and reSyXyn11C5T, were expressed in P. pastoris GS115, yielding xylanase activity of about 35 U per ml cell culture. Both xylanases were purified to homogeneity with specific activities of 363 and 344 U/mg, respectively. The temperature optimum and stability of reSyXyn11C5T decreased to 70 and 50°C from 85 and 80°C of reSyXyn11, respectively. There was no obvious change in pH characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins, T., Gerday, C., and Feller, G. (2005) FEMS Microbiol. Rev., 29, 3–23.

    Article  CAS  PubMed  Google Scholar 

  2. Yin, X., Li, J. F., Wang, J. Q., Tang, C. D., and Wu, M. C. (2013) J. Sci. Food Agric., 93, 3016–3023.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Y., Fu, Z., Huang, H., Zhang, H., Yao, B., Xiong, H., and Turunen, O. (2012) Bioresour. Technol., 112, 275–279.

    Article  CAS  PubMed  Google Scholar 

  4. Paes, G., Berrin, J. G., and Beaugrand, J. (2012) Biotechnol. Adv., 30, 564–592.

    Article  CAS  PubMed  Google Scholar 

  5. Xiong, H., Fenel, F., Leisola, M., and Turunen, O. (2004) Extremophiles, 8, 393–400.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, S., Zhang, K., Chen, X. Z., Chu, X., Sun, F., and Dong, Z. (2010) Biochem. Biophys. Res. Commun., 395, 200–206.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, J. H., Heo, S. Y., Lee, J. W., Yoon, K. H., Kim, Y. H., and Nam, S. W. (2009) Biotechnol. Bioprocess Eng., 14, 639–644.

    Article  CAS  Google Scholar 

  8. Hakulinen, N., Turunen, O., Janis, J., Leisola, M., and Rouvinen, J. (2003) Eur. J. Biochem., 270, 1399–1412.

    Article  CAS  PubMed  Google Scholar 

  9. Xue, H. P., Zhou, J. G., You, C., Huang, Q., and Lu, H. (2012) J. Ind. Microbiol. Biotechnol., 39, 1279–1288.

    Article  CAS  PubMed  Google Scholar 

  10. Fenel, F., Leisola, M., Janis, J., and Turunen, O. (2004) J. Biotechnol., 108, 137–143.

    Article  CAS  PubMed  Google Scholar 

  11. Purmonen, M., Valjakka, J., Valjakka, K., Laitinen, T., and Rouvinen, J. (2007) Protein Eng. Des. Sel., 20, 551–559.

    Article  CAS  PubMed  Google Scholar 

  12. Janis, J., Rouvinen, J., Vainiotalo, P., Turunen, O., and Shnyrov, V. L. (2008) Int. J. Biol. Macromol., 42, 75–80.

    Article  CAS  PubMed  Google Scholar 

  13. Dumon, C., Varvak, A., Wall, M. A., Flint, J. E., Lewis, R. J., Lakey, J. H., Morland, C., Luginbuhl, P., Healey, S., and Todaro, T. (2008) J. Biol. Chem., 283, 22557–22564.

    Article  CAS  PubMed  Google Scholar 

  14. Verma, D., and Satyanarayana, T. (2012) Bioresour. Technol., 117, 360–367.

    Article  CAS  PubMed  Google Scholar 

  15. Badieyan, S., Bevan, D. R., and Zhang, C. (2012) Biotechnol. Bioeng., 109, 31–44.

    Article  CAS  PubMed  Google Scholar 

  16. Kabsch, W., and Sander, C. (1983) Biopolymers, 22, 2577–2637.

    Article  CAS  PubMed  Google Scholar 

  17. Li, J. F., Tang, C. D., Shi, H. L., and Wu, M. C. (2011) J. Biosci. Bioeng., 111, 537–540.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, M. C., Fu, D. D., Zhu, J., and Xia, M. F. (2005) J. Food Sci. Biotechnol., 24, 29–33.

    CAS  Google Scholar 

  19. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  20. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956) Anal. Chem., 28, 350–356.

    Article  CAS  Google Scholar 

  21. Radestock, S., and Gohlke, H. (2008) Eng. Life Sci., 8, 507–522.

    Article  CAS  Google Scholar 

  22. Matthes, D., and de Groot, B. L. (2009) Biophys. J., 97, 599–608.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhang, H. M., Wu, M. C., Li, J. F., Gao, S. J., and Yang, Y. J. (2012) Appl. Biochem. Biotechnol., 167, 2198–2211.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, X. L., Cao, Y. H., Ding, Y. H., Lu, W. Q., and Li, D. F. (2007) J. Biotechnol., 128, 452–461.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Wu.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 6, pp. 675–683.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Yao, Y., Wu, M.C. et al. A unique disulfide bridge of the thermophilic xylanase syxyn11 plays a key role in its thermostability. Biochemistry Moscow 79, 531–537 (2014). https://doi.org/10.1134/S0006297914060066

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914060066

Key words

Navigation