Skip to main content
Log in

Study of Wnt2 secreted by A-549 cells in paracrine activation of β-catenin in co-cultured mesenchymal stem cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The canonical Wnt signal pathway is a key regulator of self-renewal and cell fate determination in various types of stem cells. The total pool of β-catenin consists of two different forms: the signaling form of the protein transmits the Wnt signals from the cell membrane to the target genes, whereas the membrane β-catenin is involved in formation of cell-to-cell contact at cadherin junctions. Earlier we developed an in vitro model of epithelial differentiation of mesenchymal stem cells (MSCs) co-cultured with epithelial A-549 cells. The purpose of the present work was to study the role of Wnt2 secreted by the A-549 cells in paracrine induction of β-catenin in co-cultured MSCs. Using the somatic gene knockdown technique, we obtained A-549 cell cultures with down-regulated WNT2. The MSCs co-cultured with the control A-549 cells displayed an increase in the levels of total cellular and signaling β-catenin and transactivation of a reporter construction containing the Lef/Tcf protein family binding sites. In contrast, β-catenin was not induced in the MSCs co-cultured with the A-549 cells with down-regulated WNT2 expression, but the total protein level was increased. We suggest that Wnt2 secreted by A-549 cells induces in co-cultured MSCs the Wnt/β-catenin signaling pathway, whereas the associated increase in total β-catenin level should be due to another mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABC:

active (signaling) β-catenin

MSCs:

mesenchymal stem cells

TBC:

total β-catenin

References

  1. Schuijers, J., and Clevers, H. (2012) EMBO J., 31, 2685–2696.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Nusse, R., and Varmus, H. (2012) EMBO J., 31, 2670–2684.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. (1996) Nature, 382, 638–642.

    Article  CAS  PubMed  Google Scholar 

  4. Huber, O., Korn, R., McLaughlin, J., Ohsugi, M., Herrmann, B. G., and Kemler, R. (1996) Mech. Dev., 59, 3–10.

    Article  CAS  PubMed  Google Scholar 

  5. Lyashenko, N., Winter, M., Migliorini, D., Biechele, T., Moon, R. T., and Hartmann, C. (2011) Nat. Cell Biol., 13, 753–761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Reya, T., and Clevers, H. (2005) Nature, 434, 843–850.

    Article  CAS  PubMed  Google Scholar 

  7. Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008) Nature, 453, 519–523.

    Article  CAS  PubMed  Google Scholar 

  8. Van Es, J. H., van Gijn, M. E., Riccio, O., van den Born, M., Vooijs, M., Begthel, H., Cozijnsen, M., Robine, S., Winton, D. J., Radtke, F., and Clevers, H. (2005) Nature, 435, 959–963.

    Article  PubMed  Google Scholar 

  9. Alonso, L., and Fuchs, E. (2003) Proc. Natl. Acad. Sci. USA, 100,Suppl. 1, 11830–11835.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ling, L., Nurcombe, V., and Cool, S. M. (2009) Gene, 433, 1–7.

    Article  CAS  PubMed  Google Scholar 

  11. Gottardi, C. J., and Gumbiner, B. M. (2004) J. Cell Biol., 167, 339–349.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Heuberger, J., and Birchmeier, W. (2010) Cold Spring Harb. Perspect. Biol., 2, a002915.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kimelman, D., and Xu, W. (2006) Oncogene, 25, 7482–7491.

    Article  CAS  PubMed  Google Scholar 

  14. Huber, A. H., and Weis, W. I. (2001) Cell, 105, 391–402.

    Article  CAS  PubMed  Google Scholar 

  15. Korswagen, H. C., Herman, M. A., and Clevers, H. C. (2000) Nature, 406, 527–532.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, J., Phillips, B. T., Amaya, M. F., Kimble, J., and Xu, W. (2008) Dev. Cell, 14, 751–761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., Zhang, Z., Lin, X., and He, X. (2002) Cell, 108, 837–847.

    Article  CAS  PubMed  Google Scholar 

  18. Papkoff, J., Rubinfeld, B., Schryver, B., and Polakis, P. (1996) Mol. Cell Biol., 16, 2128–21234.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B., and Polakis, P. (1998) Curr. Biol., 8, 573–581.

    Article  CAS  PubMed  Google Scholar 

  20. Wu, D., and Pan, W. (2010) Trends Biochem. Sci., 35, 161–168.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kishida, S., Yamamoto, H., Ikeda, S., Kishida, M., Sakamoto, I., Koyama, S., and Kikuchi, A. (1998) J. Biol. Chem., 27, 10823–10826.

    Article  Google Scholar 

  22. Sakanaka, C., Weiss, J. B., and Williams, L. T. (1998) Proc. Natl. Acad. Sci. USA, 95, 3020–3023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Su, Y., Fu, C., Ishikawa, S., Stella, A., Kojima, M., Shitoh, K., Schreiber, E. M., Day, B. W., and Liu, B. (2008) Mol. Cell, 32, 652–661.

    Article  CAS  PubMed  Google Scholar 

  24. Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., Vogelstein, B., and Clevers, H. (1997) Science, 275, 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  25. Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., and Kinzler, K. W. (1997) Science, 275, 1787–1790.

    Article  CAS  PubMed  Google Scholar 

  26. Li, V. S., Ng, S. S., Boersema, P. J., Low, T. Y., Karthaus, W. R., Gerlach, J. P., Mohammed, S., Heck, A. J., Maurice, M. M., Mahmoudi, T., and Clevers, H. (2012) Cell, 149, 1245–1256.

    Article  CAS  PubMed  Google Scholar 

  27. Hernandez, A. R., Klein, A. M., and Kirschner, M. W. (2012) Science, 338, 1337–1340.

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen, H., Rendl, M., and Fuchs, E. (2006) Cell, 127, 171–183.

    Article  CAS  PubMed  Google Scholar 

  29. Archbold, H. C., Yang, Y. X., Chen, L., and Cadigan, K. M. (2012) Acta Physiol. (Oxford), 204, 74–109.

    Article  CAS  Google Scholar 

  30. Popov, B. V., Serikov, V. B., Petrov, N. S., Izusova, T. V., Gupta, N., and Matthay, M. A. (2007) Tissue Eng., 13, 2441–2450.

    Article  CAS  PubMed  Google Scholar 

  31. You, L., He, B., Xu, Z., Uematsu, K., Mazieres, J., Fujii, N., Mikami, I., Reguart, N., McIntosh, J. K., Kashani-Sabet, M., McCormick, F., and Jablons, D. M. (2004) Cancer Res., 64, 5385–5389.

    Article  CAS  PubMed  Google Scholar 

  32. Stambolic, V., Ruel, L., and Woodgett, J. R. (1996) Curr. Biol., 6, 1664–1668.

    Article  CAS  PubMed  Google Scholar 

  33. Ray, K. P., Farrow, S., Daly, M., Talabot, F., and Searle, N. (1997) Biochem. J., 328, 707–715.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) Science, 296, 550–553.

    Article  CAS  PubMed  Google Scholar 

  35. Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997) EMBO J., 16, 3797–3804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Popov, B. V., Watt, S. W., Rozanov, Iu. M., and Chang, L. S. (2010) Mol. Biol., 44, 323–334.

    CAS  Google Scholar 

  37. Staal, F. J., Noort, M. M., Strous, G. J., and Clevers, H. C. (2002) EMBO Rep., 3, 63–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Fuxe, J., Vincent, T., and Garcia de Herreros, A. (2010) Cell Cycle, 9, 2363–2374.

    Article  CAS  PubMed  Google Scholar 

  39. Krejci, P., Aklian, A., Kaucka, M., Sevcikova, E., Prochazkova, J., Masek, J. K., Mikolka, P., Pospisilova, T., Spoustova, T., Weis, M., Paznekas, W. A., Wolf, J. H., Gutkind, J. S., Wilcox, W. R., Kozubik, A., Jabs, E. W., Bryja, V., Salazar, L., Vesela, I., and Balek, L. (2012) PLoS One, 7, e35826.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Palsgaard, J., Emanuelli, B., Winnay, J. N., Sumara, G., Karsenty, G., and Kahn, C. R. (2012) J. Biol. Chem., 287, 12016–12026.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Knudsen, E. S., and Wang, J. Y. J. (1996) J. Biol. Chem., 271, 8313–8320.

    Article  CAS  PubMed  Google Scholar 

  42. Roman-Gomez, J., Cordeu, L., Agirre, X., Jimenez-Velasco, A., San Jose-Eneriz, E., Garate, L., Calasanz, M. J., Heiniger, A., Torres, A., and Prosper, F. (2007) Blood, 109, 3462–3469.

    Article  CAS  PubMed  Google Scholar 

  43. Lam, A. P., Flozak, A. S., Russell, S., Wei, J., Jain, M., Mutlu, G. M., Budinger, G. R., Feghali-Bostwick, C. A., Varga, J., and Gottardi, C. J. (2011) Am. J. Respir. Cell Mol. Biol., 45, 915–922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Popov.

Additional information

Original Russian Text © N. S. Petrov, B. V. Popov, 2014, published in Biokhimiya, 2014, Vol. 79, No. 6, pp. 666–674.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-045, April 27, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, N.S., Popov, B.V. Study of Wnt2 secreted by A-549 cells in paracrine activation of β-catenin in co-cultured mesenchymal stem cells. Biochemistry Moscow 79, 524–530 (2014). https://doi.org/10.1134/S0006297914060054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914060054

Key words

Navigation