Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 6, pp 506–519 | Cite as

Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings

  • O. I. Grabelnych
  • O. A. Borovik
  • E. L. Tauson
  • T. P. Pobezhimova
  • A. I. Katyshev
  • N. S. Pavlovskaya
  • N. A. Koroleva
  • I. V. Lyubushkina
  • V. Yu. Bashmakov
  • V. N. Popov
  • G. B. Borovskii
  • V. K. Voinikov
Article

Abstract

Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (−2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

Key words

Triticum aestivum L. cold hardening reactive oxygen species gene expression energy-dissipating systems of mitochondria 

Abbreviations

ANT

adenine nucleotide translocator

AOX

alternative oxidase

AP

alternative pathway

CP

cytochrome pathway

DTT

dithiothreitol

FFA

free fatty acids

NDex (NDB2)

“external” NADH:quinone oxidoreductase

NDin (NDA2)

“internal” non-coupled NADH:quinone oxidoreductase

NDPex (NDB1)

“external” NADPH:quinone oxidoreductase

PCR

polymerase chain reaction

ROS

reactive oxygen species

UCP

uncoupling protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2010) Membrane Bioenergetics [in Russian], Moscow State University Publishers, Moscow.Google Scholar
  2. 2.
    Millenaar, F. F., and Lambers, H. (2003) Plant Biol., 5, 2–15.CrossRefGoogle Scholar
  3. 3.
    Vanlerberghe, G. C. (2013) Int. J. Mol. Sci., 14, 6805–6847.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Lambers, H., Robinson, A., and Ribas-Carbo, M. (2005) in Plant Respiration: From Cell to Ecosystem (Lambers, H., and Ribas-Carbo, M., eds.) Springer, Hamburg, pp. 1–15.Google Scholar
  5. 5.
    Rasmusson, A. G., Geisler, D. A., and Moller, I. M. (2008) Mitochondrion, 8, 47–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Grabelnych, O. I., Pivovarova, N. Y., Pobezhimova, T. P., Kolesnichenko, A. V., and Voinikov, V. K. (2009) Fiziol. Rast., Russ. J. Plant Physiol., 56, 332–342.CrossRefGoogle Scholar
  7. 7.
    Voinikov, V. K. (2011) Plant Mitochondria on the Temperature Stress [in Russian], Akademicheskoe Izdatelstvo Geo, Novosibirsk.Google Scholar
  8. 8.
    Hourton-Cabassa, C., Matos, A. R., Zachowski, A., and Moreau, F. (2004) Plant Physiol. Biochem., 42, 283–290.PubMedCrossRefGoogle Scholar
  9. 9.
    Vercesi, A. E., Borecky, J., Maia, I. G., Arruda, P., Cuccovia, I. M., and Chaimovich, H. (2006) Annu. Rev. Plant Biol., 57, 383–404.PubMedCrossRefGoogle Scholar
  10. 10.
    Moller, M., and Kristensen, B. K. (2004) Photochem. Photobiol. Sci., 3, 730–735.PubMedCrossRefGoogle Scholar
  11. 11.
    Grabelnych, O. I., Kolesnichenko, A. V., Pobezhimova, T. P., Zykova, V. V., and Voinikov, V. K. (2006) Russ. J. Plant Physiol., 53, 418–429.CrossRefGoogle Scholar
  12. 12.
    Blokhina, O., and Fagerstedt, K. V. (2010) Physiol. Plant., 138, 447–462.PubMedCrossRefGoogle Scholar
  13. 13.
    Popov, V. N. (2003) Biochem. Soc. Trans., 31, 1316–1317.PubMedCrossRefGoogle Scholar
  14. 14.
    Vanyushin, B. F. (2001) Usp. Biol. Khim., 41, 3–38.Google Scholar
  15. 15.
    Tumanov, I. I. (1979) Physiology of Hardening and Cold Resistance of Plants [in Russian], Nauka, Moscow.Google Scholar
  16. 16.
    Trunova, T. I. (2007) Plant and Low-Temperature Stress [in Russian], Nauka, Moscow.Google Scholar
  17. 17.
    Stewart, C. R., Martin, B. A., Reding, L., and Cerwick, S. (1990) Plant Physiol., 92, 761–766.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ribas-Carbo, M., Aroca, R., Conzalez-Meler, M. A., Irigoyen, J. J., and Sanchezdiaz, M. (2000) Plant Physiol., 122, 199–204.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Takumi, S., Tomioka, M., Eto, K., Naydenov, N., and Nakamura, C. (2002) Gen. Cenet. Syst., 77, 81–88.CrossRefGoogle Scholar
  20. 20.
    Kurimoto, K., Millar, A. H., Lambers, H., Day, D. A., and Noguchi, K. (2004) Plant Cell Physiol., 45, 1015–1022.PubMedCrossRefGoogle Scholar
  21. 21.
    Sugie, A., Naydenov, N., Mizuno, N., Nakamura, C., and Takumi, S. (2006) Gen. Genet. Syst., 81, 349–354.CrossRefGoogle Scholar
  22. 22.
    Matos, A. R., Hourton-Cabassa, C., Cicek, D., Reze, N., Arrabaca, J. D., Zachowski, A., and Moreau, F. (2007) Plant Cell Physiol., 48, 856–865.PubMedCrossRefGoogle Scholar
  23. 23.
    Armstrong, A. F., Murray, R. B., Day, D. A., Barthet, M. M., Smith, P. M. C., Millar, A. H., Whelan, J., and Atkin, O. K. (2008) Plant Cell Environ., 31, 1156–1169.PubMedCrossRefGoogle Scholar
  24. 24.
    Mizuno, N., Sugie, A., Kobayashi, F., and Takumi, S. (2008) Plant Physiol., 165, 462–467.CrossRefGoogle Scholar
  25. 25.
    Wang, J., Rajakulendran, N., Amirsadeghi, S., and Vanlerberghe, C. (2011) Physiol. Plant., 142, 339–351.PubMedCrossRefGoogle Scholar
  26. 26.
    Li, C.-R., Liang, D.-D., Li, J., Duan, Y.-B., Li, H., Yang, Y.-C., Qin, R.-Y., Li, L., Wei, P.-C., and Yang, J.-B. (2013) Plant Cell Environ., 36, 775–788.PubMedCrossRefGoogle Scholar
  27. 27.
    Shi, K., Fu, L.-J., Zhang, S., Li, X., Liao, Y.-W.-K., Xia, X.-J., Zhou, Y.-H., Wang, R.-Q., Chen, Z.-X., and Yu, J.-Q. (2013) Planta, 237, 589–601.PubMedCrossRefGoogle Scholar
  28. 28.
    Grabelnych, O. I., Pobezhimova, T. P., Pavlovskaya, N. S., Koroleva, N. A., Borovik, O. A., Lyubushkina, I. V., and Voinikov, V. K. (2011) Biochemistry (Moscow), Suppl. Ser. A: Membrane Cell Biol., 5, 249–257.CrossRefGoogle Scholar
  29. 29.
    Murayama, S., and Handa, H. (2000) Mol. Gen. Genet., 264, 112–118.PubMedCrossRefGoogle Scholar
  30. 30.
    Nogueira, F. T. S., Sassaki, F. T., and Maia, I. G. (2011) J. Bioenerg. Biomembr., 43, 71–79.PubMedCrossRefGoogle Scholar
  31. 31.
    Elhavez, D., Mureha, M. W., Clifton, R., Soole, K. L., Day, D. A., and Whelan, J. (2006) Plant Cell Physiol., 47, 43–54.CrossRefGoogle Scholar
  32. 32.
    Lee, B., Lee, H., Xiong, L., and Zhu, J.-K. (2002) Plant Cell, 14, 1235–1251.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kochetkov, N. K. (ed.) (1967) Methods in Carbohydrate Chemistry [Russian translation], Mir, Moscow, pp. 21–24.Google Scholar
  34. 34.
    Naydenov, N. G., Khanam, S. M., Atanassov, A., and Nakamura, G. (2008) Gen. Genet. Syst., 83, 31–41.CrossRefGoogle Scholar
  35. 35.
    Paolacci, A. R., Tanzarella, O. A., Porceddu, E., and Ciaffi, M. (2009) BMC Mol. Biol., 10, 11.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Childs, K. L., Hamilton, J. P., Zhu, W., Ly, E., Cheung, F., Wu, H., Rabinowicz, P. D., Town, C. D., Buell, C. R., and Chan, A. P. (2007) Nucleic Acids Res., 35(Database issue), D846–851.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Douce, R. (1985) Mitochondria in Higher Plants: Structure, Function and Biogenesis, Academic Press, London.Google Scholar
  38. 38.
    Wojtczak, L., and Schonfeld, P. (1993) Biochim. Biophys. Acta, 1183, 41–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1957) J. Biol. Chem., 193, 265–275.Google Scholar
  40. 40.
    Svensson, A. S., and Rasmusson, A. G. (2001) Plant J., 28, 73–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Luethy, M. H., Horak, A., and Elthon, T. E. (1993) Plant Physiol., 101, 931–937.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Gulick, P. J., Drouin, S., Yu, Z., Danyluk, J., Poisson, G., Monroy, A. F., and Sarhan, F. (2005) Genome, 48, 913–923.PubMedCrossRefGoogle Scholar
  43. 43.
    Herman, E. M., Rotter, K., Premakumar, R., Elwinger, G., Bae, R., Ehler-King, L., Chen, S., and Livingston, D. P. (2006) J. Exp. Botany, 57, 3601–3618.CrossRefGoogle Scholar
  44. 44.
    Vitamvas, P., Prasil, I. T., Kosova, K., Planchon, S., and Renaut, J. (2012) Proteomics, 12, 68–85.PubMedCrossRefGoogle Scholar
  45. 45.
    Xu, J., Li, Y., Sun, J., Du, L., Zhang, Y., Yu, Q., and Liu, X. (2013) Plant Biol., 15, 292–303.PubMedCrossRefGoogle Scholar
  46. 46.
    Tsvetanov, S., Ohno, R., Tsuda, K., Takumi, S., Mori, N., Atanassov, A., and Nakamura, C. (2000) Gen. Genet. Syst., 75, 49–57.CrossRefGoogle Scholar
  47. 47.
    Bartoli, C. G., Gomez, F., Martinez, D. E., and Guiamet, J. J. (2004) J. Exp. Botany, 55, 1663–1669.CrossRefGoogle Scholar
  48. 48.
    Nantes, I. L., Fagian, M. M., Catisti, R., Arruda, P., Maia, I. G., and Vercesi, A. E. (1999) FEBS Lett., 457, 103–106.PubMedCrossRefGoogle Scholar
  49. 49.
    Calegario, F. F., Cosso, R. G., Fagian, M. M., Almeida, F. V., Jardim, W. F., Jezek, P., Arruda, P., and Vercesi, A. E. (2003) J. Bioenerg. Biomembr., 35, 211–220.PubMedCrossRefGoogle Scholar
  50. 50.
    Valente, C., Pasqualim, P., Jacomasso, T., Maurer, J. B. B., de Souza, E. M., Martinez, G. R., Rocha, M. E. M., Carnieri, E. G. S., and Cadena, S. M. S. C. (2012) Plant Sci., 197, 84–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Hashimoto, H., Nishi, R., Umeda, M., Ichimiya, H., and Kato, A. (1993) Plant Mol. Biol., 22, 163–164.PubMedCrossRefGoogle Scholar
  52. 52.
    De Santis, A., Landi, P., and Genchi, G. (1999) Plant Physiol., 119, 743–754.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Popov, V. N., Markova, O. V., Mokhova, E. N., and Skulachev, V. P. (2002) Biochim. Biophys. Acta, 1553, 232–237.PubMedCrossRefGoogle Scholar
  54. 54.
    Svensson, A. S., Johansson, F. I., Moller, I. M., and Rasmusson, A. G. (2002) FEBS Lett., 517, 79–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Brunton, C. J., and Palmer, J. M. (1973) Eur. J. Biochem., 39, 283–291.PubMedCrossRefGoogle Scholar
  56. 56.
    Moghadam, A. A., Taghavi, S. M., Niazi, A., Djavaheri, M., and Ebrahimie, E. (2012) Genet. Mol. Res., 11, 3547–3567.PubMedCrossRefGoogle Scholar
  57. 57.
    Pineau, B., Mathieu, C., Gerard-Hirne, C., De Paepe, R., and Chetrit, P. (2005) J. Biol. Chem., 280, 25994–26001.PubMedCrossRefGoogle Scholar
  58. 58.
    Abdrakhimova, I. P., Andreev, I. M., and Shugaev, A. G. (2011) Russ. J. Plant Physiol., 58, 567–574.CrossRefGoogle Scholar
  59. 59.
    Pastore, D., Trono, D., Laus, M. N., Di Fonzo, N., and Passarella, S. (2001) Plant Cell Physiol., 42, 1373–1382.PubMedCrossRefGoogle Scholar
  60. 60.
    Michalecka, A. M., Svensson, A. S., Johansson, F. I., Agius, S. C., Johanson, U., Brennicke, A., Binder, S., and Rasmusson, A. G. (2003) Plant Physiol., 133, 642–652.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Stupnikova, I., Benamar, A., Tolleter, D., Grelet, J., Borovskii, G., Dorne, A. J., and Macherel, D. (2006) Plant Physiol., 140, 326–335.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Nariichuk, F. D., and Babenko, V. I. (1981) Fiziol. Biokhim. Kul’t. Rast., 13, 582–586.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. I. Grabelnych
    • 1
  • O. A. Borovik
    • 1
  • E. L. Tauson
    • 1
  • T. P. Pobezhimova
    • 1
  • A. I. Katyshev
    • 1
  • N. S. Pavlovskaya
    • 1
  • N. A. Koroleva
    • 1
  • I. V. Lyubushkina
    • 1
  • V. Yu. Bashmakov
    • 2
  • V. N. Popov
    • 2
  • G. B. Borovskii
    • 1
  • V. K. Voinikov
    • 1
  1. 1.Siberian Institute of Plant Physiology and BiochemistrySiberian Division of the Russian Academy of SciencesIrkutskRussia
  2. 2.Voronezh State UniversityVoronezhRussia

Personalised recommendations