Biochemistry (Moscow)

, Volume 78, Issue 10, pp 1112–1123 | Cite as

Improvement of the efficiency of transglycosylation catalyzed by α-galactosidase from Thermotoga maritima by protein engineering

  • K. S. Bobrov
  • A. S. Borisova
  • E. V. Eneyskaya
  • D. R. Ivanen
  • K. A. Shabalin
  • A. A. Kulminskaya
  • G. N. Rychkov


At high concentrations of p-nitrophenyl-α-D-galactopyranoside (pNPGal) as a substrate, its hydrolysis catalyzed by α-galactosidase from Thermotoga maritima (TmGalA) is accompanied by transglycosylation resulting in production of a mixture of (α1,2)-, (α1,3)-, and (α1,6)-p-nitrophenyl (pNP)-digalactosides. Molecular modeling of the reaction stage preceding the formation of the pNP-digalactosides within the active site of the enzyme revealed amino acid residues which modification was expected to increase the efficiency of transglycosylation. Upon the site-directed mutagenesis to the predicted substitutions of the amino acid residues, genes encoding the wild type TmGalA and its mutants were expressed in E. coli, and the corresponding enzymes were isolated and tested for the presence of the transglycosylating activity in synthesis of different pNP-digalactosides. Three mutants, F328A, P402D, and G385L, were shown to markedly increase the total transglycosylation as compared to the wild type enzyme. Moreover, the F328A mutant displayed an ability to produce a regio-isomer with the (α1,2)-bond at yield 16-times higher than the wild type TmGalA.

Key words

α-D-galactosidase transglycosylation enzymatic synthesis of pNP-digalactosides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Varki, A. (2006) Cell, 126, 841–845.PubMedCrossRefGoogle Scholar
  2. 2.
    Hricovini, M. (2004) Curr. Med. Chem., 11, 2565–2583.PubMedCrossRefGoogle Scholar
  3. 3.
    Mahal, L. K. (2008) Anticancer Agents Med. Chem., 8, 37–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Shukla, R. K., and Tiwari, A. (2011) Crit. Rev. Ther. Drug Carrier Syst., 28, 255–292.PubMedCrossRefGoogle Scholar
  5. 5.
    Gabius, H. J., Andre, S., Jimenez-Barbero, J., Romero, A., and Solis, D. (2011) Trends Biochem. Sci., 36, 298–313.PubMedCrossRefGoogle Scholar
  6. 6.
    Ghazarian, H., Idoni, B., and Oppenheimer, S. B. (2011) Acta Histochem., 113, 236–247.PubMedCrossRefGoogle Scholar
  7. 7.
    Oppenheimer, S. B., Alvarez, M., and Nnoli, J. (2008) Acta Histochem., 110, 6–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang, L. X. (2008) Carbohydr. Res., 343, 1509–1522.PubMedCrossRefGoogle Scholar
  9. 9.
    Shaikh, F. A., and Withers, S. G. (2008) Biochem. Cell Biol.-Biochim., 86, 169–177.CrossRefGoogle Scholar
  10. 10.
    Murata, T., and Usui, T. (1997) Biosci. Biotechnol. Biochem., 61, 1059–1066.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, L. X., and Huang, W. (2009) Curr. Opin. Chem. Biol., 13, 592–600.PubMedCrossRefGoogle Scholar
  12. 12.
    Teze, D., Dion, M., Daligault, F., Tran, V., Andre-Miral, C., and Tellier, C. (2013) Bioorg. Med. Chem. Lett., 23, 448–451.PubMedCrossRefGoogle Scholar
  13. 13.
    Meier, H., and Reid, J. S. G. (1982) in Encyclopedia of Plant Physiology, Vol. 13A (Loewus, F. A., and Tanner, W., eds.) Springer Verlag, Berlin, pp. 418–471.Google Scholar
  14. 14.
    Davies, G., and Henrissat, B. (1995) Structure, 3, 853–859.PubMedCrossRefGoogle Scholar
  15. 15.
    Weignerova, L., Simerska, P., and Kren, V. (2009) Biocatal. Biotrans., 27, 79–89.CrossRefGoogle Scholar
  16. 16.
    Weignerova, L., Hunkova, Z., Kuzma, M., and Kren, V. (2001) J. Mol. Catal. B: Enzym., 11, 219–224.CrossRefGoogle Scholar
  17. 17.
    Nakai, H., Baumann, M. J., Petersen, B. O., Westphal, Y., Hachem, M. A., Dilokpimol, A., Duus, J. O., Schols, H. A., and Svensson, B. (2010) FEBS J., 277, 3538–3551.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao, H., Lu, L., Xiao, M., Wang, Q., Lu, Y., Liu, C., Wang, P., Kumagai, H., and Yamamoto, K. (2008) FEMS Microbiol. Lett., 285, 278–283.PubMedCrossRefGoogle Scholar
  19. 19.
    Hinz, S. W., Doeswijk-Voragen, C. H., Schipperus, R., van den Broek, L. A., Vincken, J. P., and Voragen, A. G. (2006) Biotechnol. Bioeng., 93, 122–131.PubMedCrossRefGoogle Scholar
  20. 20.
    Simerska, P., Kuzma, M., Pisvejcova, A., Weignerova, L., Mackova, M., Riva, S., and Kren, V. (2003) Folia Microbiol. (Praha), 48, 329–337.CrossRefGoogle Scholar
  21. 21.
    Ashida, H., Yamamoto, K., and Kumagai, H. (2001) Carbohydr. Res., 330, 487–493.PubMedCrossRefGoogle Scholar
  22. 22.
    Comfort, D. A., Bobrov, K. S., Ivanen, D. R., Shabalin, K. A., Harris, J. M., Kulminskaya, A. A., Brumer, H., and Kelly, R. M. (2007) Biochemistry, 46, 3319–3330.PubMedCrossRefGoogle Scholar
  23. 23.
    Henrissat, B., and Davies, G. J. (1997) Curr. Opin. Struct. Biol., 7, 637–644.PubMedCrossRefGoogle Scholar
  24. 24.
    Abagyan, R. A., Totrov, M. M., and Kuznetsov, D. A. (1994) J. Comp. Chem., 15, 488–506.CrossRefGoogle Scholar
  25. 25.
    Fujimoto, Z., Kaneko, S., Momma, M., Kobayashi, H., and Mizuno, H. (2003) J. Biol. Chem., 278, 20313–20318.PubMedCrossRefGoogle Scholar
  26. 26.
    Fredslund, F., Hachem, M. A., Larsen, R. J., Sorensen, P. G., Coutinho, P. M., Lo Leggio, L., and Svensson, B. (2011) J. Mol. Biol., 412, 466–480.PubMedCrossRefGoogle Scholar
  27. 27.
    Halgren, T. A. (1996) J. Comp. Chem., 17, 490–519.CrossRefGoogle Scholar
  28. 28.
    Montgomery, E. M., Richtmyer, N. K., and Hudson, C. S. (1942) J. Am. Chem. Soc., 64, 690–694.CrossRefGoogle Scholar
  29. 29.
    Sambrook, J., and Russell, D. W. (2001) Molecular Cloning. A Laboratory Manual, 3rd Edn., Cold Spring Harbor Laboratory Press, N. Y.Google Scholar
  30. 30.
    Kuzmic, P. (1996) Anal. Biochem., 237, 260–273.PubMedCrossRefGoogle Scholar
  31. 31.
    Dion, M., Osanjo, G., Andre, C., Spangenberg, P., Rabiller, C., and Tellier, C. (2001) Glycoconj. J., 18, 457–464.PubMedCrossRefGoogle Scholar
  32. 32.
    Guce, A. I., Clark, N. E., Salgado, E. N., Ivanen, D. R., Kulminskaya, A. A., Brumer III, H., and Garman, S. C. (2010) J. Biol. Chem., 6, 3625–3632.CrossRefGoogle Scholar
  33. 33.
    Osanjo, G., Dion, M., Drone, J., Solleux, C., Tran, V., Rabiller, C., and Tellier, C. (2007) Biochemistry, 46, 1022–1033.PubMedCrossRefGoogle Scholar
  34. 34.
    Cobucci-Ponzano, B., Zorzetti, C., Strazzulli, A., Carillo, S., Bedini, E., Corsaro, M. M., Comfort, D. A., Kelly, R. M., Rossi, M., and Moracci, M. (2011) Glycobiology, 21, 448–456.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • K. S. Bobrov
    • 1
  • A. S. Borisova
    • 1
  • E. V. Eneyskaya
    • 1
  • D. R. Ivanen
    • 1
  • K. A. Shabalin
    • 1
  • A. A. Kulminskaya
    • 1
  • G. N. Rychkov
    • 1
    • 2
  1. 1.Petersburg Nuclear Physics InstituteGatchina, Leningrad RegionRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations