Studies that shed new light on aging


I will first discuss how all aging models that assume that the aged cell has irreversibly lost its youthful capabilities through such mechanisms as accumulated dysfunction, accumulated damage, and/or accumulation of toxic byproducts of metabolism have been shown to be incorrect. I will then briefly discuss models of aging and propose an experiment that would distinguish between those models and provide a basis for organismic rejuvenation.

This is a preview of subscription content, access via your institution.


  1. 1.

    Medawar, P. B. (1952) Accumulation at Old Age through Aging: An Unsolved Problem in Biology, HK Lewis Publisher, London.

    Google Scholar 

  2. 2.

    Williams, G. C. (1957) Evolution, 11, 398–411.

    Article  Google Scholar 

  3. 3.

    Kirkwood, T. B. L., and Rose, M. R. (1991) Phil. Trans. R. Soc. Lond. B, 332, 15–24.

    Article  CAS  Google Scholar 

  4. 4.

    Hass, R. (2009) Exp. Gerontol., 44, 634–638.

    PubMed  Article  Google Scholar 

  5. 5.

    Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Irving, L., Weissman, I. L., and Rando, T. A. (2005) Nature, 433, 760–764.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Le Bourg, E. (2001) Demograph. Res., 4, 1–28.

    Article  Google Scholar 

  7. 7.

    Goldsmith, T. (2011) Aging by Design, Azinet Press, Annapolis, ISBN 0-9788709-3-X.

    Google Scholar 

  8. 8.

    Kirkwood, T. B. L. (2005) Cell, 120, 437–447.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Kirkwood, T. B. L. (1977) Nature, 270, 301–304.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    De Boer, J., Andressoo, J. O., de Wit, J., Huijmans, J., Beems, R. B., van Steeg, H., Weeda, G., van der Horst, G. T., van Leeuwen, W., Themmen, A. P., Meradji, M., and Hoeijmakers, J. H. (2002) Science, 296, 1276–1279.

    PubMed  Article  Google Scholar 

  11. 11.

    Wijnhoven, S. W., Beems, R. B., Roodbergen, M., van den Berg, J., Lohman, P. H., Diderich, K., van der Horst, G. T., Vijg, J., Hoeijmakers, J. H., and van Steeg, H. (2005) DNA Repair, 4, 1314–1324.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Van der Pluijm, I., Garinis, G. A., Brandt, R. M. C., Gorgels, T. G. M. F., Wijnhoven, S. W., Diderich, K. E. M., de Wit, J., Mitchell, J. R., van Oostrom, C., Beems, R., Niedernhofer, L. J., Velasco, S., Friedberg, E. C., Tanaka, K., van Steeg, H., Hoeijmakers, J. H. J., and van der Horst, G. T. J. (2005) PLOS Biol., 5, 1–12.

    Google Scholar 

  13. 13.

    Chambers, S. M., Shaw, C. A., Gatza, C., Fisk, C. J., Donehower, L. A., and Goodel, L. A. (2007) PLOS Biol., 5, 201–213.

    Article  Google Scholar 

  14. 14.

    Gorbunova, V., Seluanov, A., Mao, Z., and Hine, C. (2007) Nucleic Acids Res., 35, 7466–7474.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Sudo, K., Ema, H., Morita, Y., and Nakauchij, H. (2000) Exp. Med., 192, 1273–1280.

    Article  CAS  Google Scholar 

  16. 16.

    Campisi, J. (2005) Cell, 120, 513–522.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., Kirkland, J. L., and van Deursen, J. M. (2011) Nature, 479, 232–236.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Rando, T. A. (2006) Nature, 441, 1080–1086.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Conboy, M. (2009) Chap. 10. Methods in Bioengineering: Stem Cell Bioengineering (The Artech House Methods in Bioengineering Series) (Parekkadan, B., and Yarmush, M. L., eds.).

  20. 20.

    Lanza, R. P., Jose, B., Cibelli, J. B., Blackwell, C., Vincent, J., Cristofalo, V. J., Francis, M. K., Gabriela, M., Baerlocher, G. M., Mak, J., Schertzer, M., Chavez, E. A., Sawyer, N., Peter, M., Lansdorp, P. M., and West, M. D. (2000) Science, 288, 665–669.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Lapasset, L., Milhavet, O., Prieur, A., Besnard, E., Babled, A., Ait-Hamou, N., Leschik, J., Pellestor, F., Ramirez, J. M., De Vos, J., Lehmann, S., and Lemaitre, J. M. (2011) Genes Dev., 25, 2248–2253.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Rando, T. A., and Chang, H. Y. (2012) Cell, 158, 46–57.

    Article  Google Scholar 

  23. 23.

    Zhangfa, S., Wang, J., Guachalla, L. M., Terszowski, G., Rodewald, H.-R., Ju, Z., and Rudolph, K. L. (2010) Blood, 115, 1481–1489.

    Article  Google Scholar 

  24. 24.

    Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., Stan, T. M., Fainberg, N., Ding, Z., Eggel, A., Lucin, K. M., Czirr, E., Jeong-Soo Park, Couillard-Despres, S., Aigner, L., Li, G., Peskind, E. R., Kaye, J. A., Quinn, J. F., Galasko, D. R., Xie, X. S., Rando, T. A., and Wyss-Coray, T. (2011) Nature, 477, 90–94.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Carlson, B. M., and Faulkner, J. A. (1989) Am. J. Physiol.-Cell Physiol., 256, 1262–1266.

    Google Scholar 

  26. 26.

    Zacks, S. I., and Sheff, M. F. (1982) Muscle Nerve, 5, 152–161.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Carlson, B. M., Dedkov, E. I., Borisov, A. B., and Faulkner, J. A. (2001) Biol. Sci., 56, 224–233.

    Google Scholar 

  28. 28.

    Harrison, D., Astle, C., and Doubleday, J. (1977) J. Immunol., 118, 1223–1227.

    PubMed  CAS  Google Scholar 

  29. 29.

    McCay, C. M., Pope, F., Lunsford, W., Sperling, G., and Sambhavaphol, P. (1957) Gerontologia, 1, 7–17.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Ludwig, F. C., and Elashoff, R. M. (1972) Trans. NY Acad. Sci., 34, 5827–5835.

    Article  Google Scholar 

  31. 31.

    Silva, H., and Conboy, I. M. (2008) Aging and Stem Cell Renewal, July 15, in Stem Book [Internet], Cambridge (MA): Harvard Stem Cell Institute; 2008 (ailable from:

    Google Scholar 

  32. 32.

    Carlson, M. E., Suetta, C., Conboy, M. J., Aagaard, Mackey, P. A., Kjaer, M., and Conboy, I. M. (2009) EMBO Mol. Med., 1, 381–391.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Gupta, S., Chiplunkar, S., Kim, C., Yel, L., and Gollapudi, S. (2003) Mech. Ageing Dev., 124, 503–509.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Charles, T., Lutz, C. T., and Quinn, L. S. (2012) Aging, 4, 535–546.

    Google Scholar 

  35. 35.

    Shander, A., Hofmann, A., Gombotz, H., Theusinger, O. M., and Spahn, D. R. (2007) Best Pract. Res. Clin. Anaesthesiol., 21, 271–289.

    PubMed  Article  Google Scholar 

  36. 36.

    Szczepiorkowski, Z. M., Winters, J. L., Bandarenko, N., Kim, H. C., Linenberger, M. L., Marques, M. B., Sarode, R., Schwartz, J., Weinstein, R., and Shaz, B. H. (2010) J. Clin. Apher., 25, 83–177.

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H. L. Katcher.

Additional information

Published in Russian in Biokhimiya, 2013, Vol. 78, No. 9, pp. 1354–1366.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katcher, H.L. Studies that shed new light on aging. Biochemistry Moscow 78, 1061–1070 (2013).

Download citation

Key words

  • aging
  • aging mechanisms
  • theories of aging
  • parabiosis
  • cross-age transplantation
  • rejuvenation
  • cellular aging
  • age-dependent transcriptional patterns