How does the body know how old it is? Introducing the epigenetic clock hypothesis

Abstract

Animals and plants have biological clocks that help to regulate circadian cycles, seasonal rhythms, growth, development, and sexual maturity. It is reasonable to suspect that the timing of senescence is also influenced by one or more biological clocks. Evolutionary reasoning first articulated by G. Williams suggests that multiple, redundant clocks might influence organismal aging. Some aging clocks that have been proposed include the suprachiasmatic nucleus, the hypothalamus, involution of the thymus, and cellular senescence. Cellular senescence, mediated by telomere attrition, is in a class by itself, having recently been validated as a primary regulator of aging. Gene expression is known to change in characteristic ways with age, and in particular DNA methylation changes in age-related ways. Herein, I propose a new candidate for an aging clock, based on epigenetics and the state of chromosome methylation, particularly in stem cells. If validated, this mechanism would present a challenging target for medical intervention.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Mitteldorf, J. (2004) Evol. Ecol. Res., 6, 1–17.

    Google Scholar 

  2. 2.

    Mitteldorf, J. (2010) in Approaches to the Control of Aging: Building a Pathway to Human Life Extension (Fahy, G. M., et al., eds.) Springer, New York.

  3. 3.

    Mitteldorf, J. (2012) Biochemistry (Moscow), 77, 716–725.

    Article  CAS  Google Scholar 

  4. 4.

    Guarente, L., and Kenyon, C. (2000) Nature, 408, 255–262.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Forbes, V. (2000) Funct. Ecol., 14, 12–24.

    Article  Google Scholar 

  6. 6.

    Masoro, E. J. (2007) Interdiscipl. Top. Gerontol., 35, 1–17.

    CAS  Google Scholar 

  7. 7.

    Leroi, A., Chippindale, A. K., and Rose, M. R. (1994) Evolution, 48, 1244–1257.

    Article  Google Scholar 

  8. 8.

    Arantes-Oliveira, N., Berman, J. R., and Kenyon, C. (2003) Science, 302, 611.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L.-L., Diaspro, A., Dossen, J. W., Gralla, E. B., and Longo, V. D. (2004) J. Cell Biol., 166, 1055–1067.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Clark, W. R. (1998) Sex and the Origins of Death, Oxford University Press, Oxford.

    Google Scholar 

  11. 11.

    Clark, W. R. (1999) A Means to an End: the Biological Basis of Aging and Death, Oxford University Press, New York.

    Google Scholar 

  12. 12.

    Clark, W. R. (2004) Adv. Gerontol., 14, 7–20.

    PubMed  CAS  Google Scholar 

  13. 13.

    Behl, C. (2000) J. Neur. Trans., 107, 1325–1344.

    Article  CAS  Google Scholar 

  14. 14.

    Cawthon, R. M., Smith, K. R., O’Brien, E., Sivatchenko, A., and Kerber, R. A. (2003) Lancet, 361, 393–395.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Williams, G. (1957) Evolution, 11, 398–411.

    Article  Google Scholar 

  16. 16.

    Mitteldorf, J. (2013) Biochemistry (Moscow), 78, 1054–1060.

    Article  Google Scholar 

  17. 17.

    Beck, S. D., and Bharadwaj, R. K. (1972) Science, 178, 1210–1211.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Piraino, S., Boero, F., Aeschbach, B., and Schmid, V. (1996) Biol. Bull., 90, 302–312.

    Article  Google Scholar 

  19. 19.

    Barinaga, M. (1992) Science, 258, 398–399.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Jaskelioff, M., Muller, F. L., Paik, J.-H., Thomas, E., Jiang, S., Adams, A. C., Sahin, E., Kost-Alimova, M., Protopopov, A., Cadicanos, J., Horner, J. W., Maratos-Flier, E., and DePinho, R. A. (2011) Nature, 469, 102–106.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., and Blasco, M. A. (2012) EMBO Mol. Med., 4, 691–704.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., and Rando, T. A. (2005) Nature, 433, 760–764.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Katcher, H. (2013) Biochemistry (Moscow), 78, 1061–1070.

    Article  Google Scholar 

  24. 24.

    Bernardes de Jesus, B., Schneeberger, K., Vera, E., Tejera, A., Harley, C. B., and Blasco, M. A. (2011) Aging Cell, 10, 604–621.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Mair, W., Goymer, P., Pletcher, S. D., and Partridge, L. (2003) Science, 301, 1731–1733.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Klein, D. C., Moore, R. Y., and Reppert, S. M. (1991) Suprachiasmatic Nucleus: the Mind’s Clock, Oxford University Press, New York.

    Google Scholar 

  27. 27.

    Edgar, R. S., Green, E. W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan, M., Valekunja, U. K., Feeney, K. A., Maywood, E. S., Hastings, M. H., Baliga, N. S., Merrow, M., Millar, A. J., Johnson, C. H., Kyriacou, C. P., O’Neill, J. S., and Reddy, A. B. (2012) Nature, 485, 459–464.

    PubMed  CAS  Google Scholar 

  28. 28.

    Danks, H. (2005) J. Insect Physiol., 51, 609–619.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Ebling, F. J. (2005) Reproduction, 129, 675–683.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Kumar, S., Mohan, A., and Sharma, V. K. (2005) Chronobiol. Int., 22, 641–653.

    PubMed  Article  Google Scholar 

  31. 31.

    Dubrovsky, Y. V., Samsa, W. E., and Kondratov, R. V. (2010) Aging (Albany NY), 2, 936.

    CAS  Google Scholar 

  32. 32.

    Dilman, V. M., and Dean, W. (1992) The Neuroendocrine Theory of Aging and Degenerative Disease, Center for Bio Gerontology.

    Google Scholar 

  33. 33.

    Weinert, B. T., and Timiras, P. S. (2003) J. Appl. Physiol., 95, 1706–1716.

    PubMed  CAS  Google Scholar 

  34. 34.

    Walford, R. L. (1964) The Gerontologist, 4, 195–197.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Walford, R. L. (1969) Immunol. Rev., 2, 171.

    Article  Google Scholar 

  36. 36.

    West, M. D. (2003) The Immortal Cell, Doubleday, New York.

    Google Scholar 

  37. 37.

    Johnson, A. A., Akman, K., Calimport, S. R., Wuttke, D., Stolzing, A., and de Magalhres, J. P. (2012) Rejuvenation Res., 15, 483–494.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Cooney, C., and Lawren, B. (1999) Methyl Magic: Maximum Health through Methylation, Andrews McNeel Pub.

    Google Scholar 

  39. 39.

    Jablonka, E., and Raz, G. (2009) The Quart. Rev. Biol., 84, 131–176.

    Article  Google Scholar 

  40. 40.

    Bellizzi, D., D’Aquila, P., Montesanto, A., Corsonello, A., Mari, V., Mazzei, B., Lattanzio, F., and Passarino, G. (2012) Age, 34, 169–179.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Lin, M.-J., Tang, L. Y., Reddy, M. N., and Shen, C. K. (2005) J. Biol. Chem., 280, 861–864.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Yung, R., Ray, D., Eisenbraun, J. K., Deng, C., Attwood, J., Eisenbraun, M. D., Johnson, K., Miller, R. A., Hanash, S., and Richardson, B. (2001) J. Gerontol. Ser. A: Biol. Sci. Med. Sci., 56, B268–B276.

    Article  CAS  Google Scholar 

  43. 43.

    Ray, D., Wu, A., Wilkinson, J. E., Murphy, H. S., Lu, Q., Kluve-Beckerman, B., Liepnieks, J. J., Benson, M., Yung, R., and Richardson, B. (2006) J. Gerontol. Ser. A: Biol. Sci. Med. Sci., 61, 115–124.

    Article  Google Scholar 

  44. 44.

    Liu, L., van Groen, T., Kadish, I., Li, Y., Wang, D., James, S. R., Karpf, A. R., and Tollefsbol, T. O. (2011) Clin. Epigenetics, 2, 349–360.

    PubMed  Article  Google Scholar 

  45. 45.

    Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Sucer, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y. Z., Plass, C., and Esteller, M. (2005) Proc. Natl. Acad. Sci. USA, 102, 10604–10609.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Wilson, V. L., and Jones, P. A. (1983) Science (NY), 220, 1055.

    Article  CAS  Google Scholar 

  47. 47.

    Heyn, H., Li, N., Ferreira, H. J., Moran, S., Pisano, D. G., Gomez, A., Diez, J., Sanchez-Mut, J. V., Setien, F., Carmona, F. J., Puca, A. A., Sayols, S., Pujana, M. A., Serra-Musach, J., Iglesias-Platas, I., Formiga, F., Fernandez, A. F., Fraga, M. F., Heath, S. C., Valencia, A., Gut, I. G., Wang, J., and Esteller, M. (2012) Proc. Natl. Acad. Sci. USA, 109, 10522–10527.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Bowles, J. T. (1998) Med. Hypotheses, 51, 179–221.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Vanyushin, B., Nemirovsky, L. E., Klimenko, V. V., Vasiliev, V. K., and Belozersky, A. N. (1973) Gerontology, 19, 138–152.

    Article  CAS  Google Scholar 

  50. 50.

    Wilson, V. L., Smith, R. A., Ma, S., and Culter, R. G. (1987) J. Biol. Chem., 262, 9948–9951.

    PubMed  CAS  Google Scholar 

  51. 51.

    Mazin, A. (1993) Mol. Biol. (Moscow), 27, 160.

    CAS  Google Scholar 

  52. 52.

    Mazin, A. (1993) Mol. Biol. (Moscow), 27, 895.

    CAS  Google Scholar 

  53. 53.

    Skulachev, V. P. (2004) in Model Systems in Aging (Nystrom, T., and Osiewacz, H. D., eds.) Springer, Berlin, pp. 191–238.

  54. 54.

    Weitzman, S. A., Turk, P. W., Milkowski, D. H., and Kozlowski, K. (1994) Proc. Natl. Acad. Sci. USA, 91, 1261–1264.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Romanenko, E. B., Alessenko, A. V., and Vanyushin, B. F. (1995) Biochem. Mol. Biol. Int., 35, 87.

    PubMed  CAS  Google Scholar 

  56. 56.

    Panning, B., and Jaenisch, R. (1996) Genes Devel., 10, 1991–2002.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Kelly, G. (2010) Altern. Med. Rev., 15, 245–263.

    PubMed  Google Scholar 

  58. 58.

    Zimmerman, J. A., Malloy, V., Krajcik, R., and Orentreich, N. (2003) Exp. Gerontol., 38, 47.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Baldessarini, R. J. (1987) Am. J. Med., 83 (Suppl. 1), 95–103.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Batra, V., Sridhar, S., and Devasagayam, T. P. A. (2010) Chem.-Biol. Interact., 183, 425–433.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. J. Mitteldorf.

Additional information

Published in Russian in Biokhimiya, 2013, Vol. 78, No. 9, pp. 1337–1344.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mitteldorf, J.J. How does the body know how old it is? Introducing the epigenetic clock hypothesis. Biochemistry Moscow 78, 1048–1053 (2013). https://doi.org/10.1134/S0006297913090113

Download citation

Key words

  • biological clock
  • senescence
  • rhythm
  • maturation
  • aging
  • programmed aging
  • adaptive aging
  • methylation
  • epigenetics
  • gene expression