Skip to main content
Log in

Isolation and properties of flight muscle mitochondria of the bumblebee Bombus terrestris (L.)

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This report describes the isolation procedure and properties of tightly coupled flight muscle mitochondria of the bumblebee Bombus terrestris (L.). The highest respiratory control index was observed upon oxidation of pyruvate, whereas the highest respiration rates were registered upon oxidation of a combination of the following substrates: pyruvate + malate, pyruvate + proline, or pyruvate + glutamate. The respiration rates upon oxidation of malate, glutamate, glutamate + malate, or succinate were very low. At variance with flight muscle mitochondria of a number of other insects reported earlier, B. terrestris mitochondria did not show high rates of respiration supported by oxidation of proline. The maximal respiration rates were observed upon oxidation of α-glycerophosphate. Bumblebee mitochondria are capable of maintaining high membrane potential in the absence of added respiratory substrates, which was completely dissipated by the addition of rotenone, suggesting high amount of intramitochondrial NAD-linked oxidative substrates. Pyruvate and α-glycerophosphate appear to be the optimal oxidative substrates for maintaining the high rates of oxidative metabolism of the bumblebee mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAtr:

carboxyatractylate

DCPIP:

2,6-dichlorophenolindophenol

2,4-DNP:

2,4-dinitrophenol

SDH:

succinate dehydrogenase

References

  1. Banda, H. J., and Paxton, R. J. (1991) Acta Horticulturae, 228, 194–198.

    Google Scholar 

  2. Kevan, P. G., Straver, W. A., Offer, M., and Laverty, T. M. (1991) Proc. Entomol. Soc. Ontario, 122, 15–19.

    Google Scholar 

  3. Morandin, L. A., Laverty, T. M., and Kevan, P. G. (2001) J. Econom. Entomol., 94, 462–467.

    Article  CAS  Google Scholar 

  4. Whittington, R., and Winston, M. L. (2004) J. Econom. Entomol., 97, 1384–1389.

    Article  Google Scholar 

  5. Velthuis, H. H. W., and Van Doorn, A. (2006) Apidologie, 37, 421–451.

    Article  Google Scholar 

  6. Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F., and Griswold, T. L. (2001) Proc. Natl. Acad. Sci. USA, 108, 662–667.

    Article  Google Scholar 

  7. Gill, R. J., Ramos-Rodriguez, O., and Raine, N. E. (2012) Nature, 491, 105–108.

    Article  PubMed  CAS  Google Scholar 

  8. Akerman, K. E., and Wikstrom, M. K. (1976) FEBS Lett., 68, 191–197.

    Article  PubMed  CAS  Google Scholar 

  9. Figueira, T. R., Melo, D. R., Vercesi, A. E., and Castilho, R. F. (2012) Methods Mol. Biol., 810, 103–117.

    Article  PubMed  CAS  Google Scholar 

  10. Zanotti, A., and Azzone, G. F. (1980) Arch. Biochem. Biophys., 201, 255–265.

    Article  PubMed  CAS  Google Scholar 

  11. Hatefi, Y., and Stiggal, D. L. (1978) Methods Enzymol., 53, 21–27.

    Article  PubMed  CAS  Google Scholar 

  12. Bergh, S. G. V. d. (1967) Methods Enzymol., 10, 117–122.

    Article  Google Scholar 

  13. Palmieri, F. (2004) Pflugers Arch., 447, 689–709.

    Article  PubMed  CAS  Google Scholar 

  14. Haitina, T., Lindblom, J., Renstrom, T., and Fredriksson, R. (2006) Genomics, 88, 779–790.

    Article  PubMed  CAS  Google Scholar 

  15. Van den Bergh, S., and Slater, E. C. (1962) Biochem. J., 82, 362–371.

    PubMed  CAS  Google Scholar 

  16. Servet, C., Ghelis, T., Richard, L., Zilberstein, A., and Savoure, A. (2012) Front. Biosci., 17, 607–620.

    Article  CAS  Google Scholar 

  17. Bursell, E. (1975) Comp. Biochem. Physiol. B., 52, 235–238.

    Article  PubMed  CAS  Google Scholar 

  18. Lehmann, S., Funck, D., Szabados, L., and Rentsch, D. (2010) Amino Acids, 39, 949–962.

    Article  PubMed  CAS  Google Scholar 

  19. Sacktor, B. (1976) Biochem. Soc. Symp., 41, 111–131.

    PubMed  CAS  Google Scholar 

  20. Bulos, B. A., Thomas, B. J., Shukla, S. P., and Sacktor, B. (1984) Arch. Biochem. Biophys., 234, 382–393.

    Article  PubMed  CAS  Google Scholar 

  21. Bertsch, A. (1984) Oecologia (Berlin), 62, 325–336.

    Article  Google Scholar 

  22. Surhot, B., Greive, H., Hommel, C., and Bertsch, A. (1988) J. Comp. Physiol., 158, 263–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Starkov.

Additional information

Published in Russian in Biokhimiya, 2013, Vol. 78, No. 8, pp. 1158–1164.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syromyatnikov, M.Y., Lopatin, A.V., Starkov, A.A. et al. Isolation and properties of flight muscle mitochondria of the bumblebee Bombus terrestris (L.). Biochemistry Moscow 78, 909–914 (2013). https://doi.org/10.1134/S0006297913080075

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913080075

Key words

Navigation