Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 8, pp 855–866 | Cite as

Protein biosynthesis in mitochondria

  • A. V. Kuzmenko
  • S. A. Levitskii
  • E. N. Vinogradova
  • G. C. Atkinson
  • V. Hauryliuk
  • N. Zenkin
  • P. A. KamenskiEmail author
Review

Abstract

Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis.

Key words

mitochondria translation ribosomes translation factors 

Abbreviations

LRS

large ribosomal subunit

SRS

small ribosomal subunit

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J., and Woese, C. R. (1985) Proc. Natl. Acad. Sci. USA, 82, 4443–4447.PubMedCrossRefGoogle Scholar
  2. 2.
    Leon, S. A., and Mahler, H. R. (1968) Arch. Biochem. Biophys., 126, 305–319.PubMedCrossRefGoogle Scholar
  3. 3.
    Linnane, A. W., Lamb, A. J., Christodoulou, C., and Lukins, H. B. (1968) Proc. Natl. Acad. Sci. USA, 59, 1288–1293.PubMedCrossRefGoogle Scholar
  4. 4.
    Wagner, R. P. (1969) Science, 163, 1026–1031.PubMedCrossRefGoogle Scholar
  5. 5.
    Watanabe, K. (2010) Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 86, 11–39.PubMedCrossRefGoogle Scholar
  6. 6.
    Christian, B. E., and Spremulli, L. L. (2012) Biochim. Biophys. Acta, 1819, 1035–1054.PubMedCrossRefGoogle Scholar
  7. 7.
    Melnikov, S., Ben-Shem, A., Garreau de Loubresse, N., Jenner, L., Yusupova, G., and Yusupov, M. (2012) Nat. Struct. Mol. Biol., 19, 560–567.PubMedCrossRefGoogle Scholar
  8. 8.
    Gray, M. W. (2012) Cold Spring Harb. Perspect. Biol., 4, a011403.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilson, R. J., and Williamson, D. H. (1997) Microbiol. Mol. Biol. Rev., 61, 1–16.PubMedGoogle Scholar
  10. 10.
    Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981) Nature, 290, 457–465.PubMedCrossRefGoogle Scholar
  11. 11.
    Unseld, M., Marienfeld, J. R., Brandt, P., and Brennicke, A. (1997) Nat. Genet., 15, 57–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Gray, M. W., Lang, B. F., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., Brossard, N., Delage, E., Littlejohn, T. G., Plante, I., Rioux, P., Saint-Louis, D., Zhu, Y., and Burger, G. (1998) Nucleic Acids Res., 26, 865–878.PubMedCrossRefGoogle Scholar
  13. 13.
    Brown, W. M., George, M., Jr., and Wilson, A. C. (1979) Proc. Natl. Acad. Sci. USA, 76, 1967–1971.PubMedCrossRefGoogle Scholar
  14. 14.
    Jacob, J. E., Vanholme, B., Van Leeuwen, T., and Gheysen, G. (2009) BMC Res. Notes, 2, 192.PubMedCrossRefGoogle Scholar
  15. 15.
    Osawa, S., Jukes, T. H., Watanabe, K., and Muto, A. (1992) Microbiol. Rev., 56, 229–264.PubMedGoogle Scholar
  16. 16.
    Masters, B. S., Stohl, L. L., and Clayton, D. A. (1987) Cell, 51, 89–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Tiranti, V., Savoia, A., Forti, F., D’Apolito, M. F., Centra, M., Rocchi, M., and Zeviani, M. (1997) Hum. Mol. Genet., 6, 615–625.PubMedCrossRefGoogle Scholar
  18. 18.
    Ringel, R., Sologub, M., Morozov, Y. I., Litonin, D., Cramer, P., and Temiakov, D. (2011) Nature, 478, 269–273.PubMedCrossRefGoogle Scholar
  19. 19.
    Ojala, D., Montoya, J., and Attardi, G. (1981) Nature, 290, 470–474.PubMedCrossRefGoogle Scholar
  20. 20.
    Temperley, R. J., Wydro, M., Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2010) Biochim. Biophys. Acta, 1797, 1081–1085.PubMedCrossRefGoogle Scholar
  21. 21.
    Montoya, J., Ojala, D., and Attardi, G. (1981) Nature, 290, 465–470.PubMedCrossRefGoogle Scholar
  22. 22.
    Groot, G. S., Flavell, R. A., Van Ommen, G. J., and Grivell, L. A. (1974) Nature, 252, 167–169.PubMedCrossRefGoogle Scholar
  23. 23.
    Grohmann, K., Amairic, F., Crews, S., and Attardi, G. (1978) Nucleic Acids Res., 5, 637–651.PubMedCrossRefGoogle Scholar
  24. 24.
    Dunstan, H. M., Green-Willms, N. S., and Fox, T. D. (1997) Genetics, 147, 87–100.PubMedGoogle Scholar
  25. 25.
    Dziembowski, A., Piwowarski, J., Hoser, R., Minczuk, M., Dmochowska, A., Siep, M., van der Spek, H., Grivell, L., and Stepien, P. P. (2003) J. Biol. Chem., 278, 1603–1611.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang, G., Chen, H. W., Oktay, Y., Zhang, J., Allen, E. L., Smith, G. M., Fan, K. C., Hong, J. S., French, S. W., McCaffery, J. M., Lightowlers, R. N., Morse, H. C., 3rd, Koehler, C. M., and Teitell, M. A. (2010) Cell, 142, 456–467.PubMedCrossRefGoogle Scholar
  27. 27.
    Suzuki, T., and Nagao, A. (2011) Annu. Rev. Genet., 45, 299–329.PubMedCrossRefGoogle Scholar
  28. 28.
    Helm, M., Brule, H., Friede, D., Giege, R., Putz, D., and Florentz, C. (2000) RNA, 6, 1356–1379.PubMedCrossRefGoogle Scholar
  29. 29.
    Yokogawa, T., Watanabe, Y., Kumazawa, Y., Ueda, T., Hirao, I., Miura, K., and Watanabe, K. (1991) Nucleic Acids Res., 19, 6101–6105.PubMedCrossRefGoogle Scholar
  30. 30.
    Sharma, M. R., Koc, E. C., Datta, P. P., Booth, T. M., Spremulli, L. L., and Agrawal, R. K. (2003) Cell, 115, 97–108.PubMedCrossRefGoogle Scholar
  31. 31.
    Kamenski, P., Kolesnikova, O., Jubenot, V., Entelis, N., Krasheninnikov, I. A., Martin, R. P., and Tarassov, I. (2007) Mol. Cell, 26, 625–637.PubMedCrossRefGoogle Scholar
  32. 32.
    Hancock, K., and Hajduk, S. L. (1990) J. Biol. Chem., 265, 19208–19215.PubMedGoogle Scholar
  33. 33.
    Schneider, A. (2011) Annu. Rev. Biochem., 80, 1033–1053.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Brien, T. W. (1971) J. Biol. Chem., 246, 3409–3417.PubMedGoogle Scholar
  35. 35.
    Maslov, D. A., Sharma, M. R., Butler, E., Falick, A. M., Gingery, M., Agrawal, R. K., Spremulli, L. L., and Simpson, L. (2006) Mol. Biochem. Parasitol., 148, 69–78.PubMedCrossRefGoogle Scholar
  36. 36.
    Borst, P., and Grivell, L. A. (1971) FEBS Lett., 13, 73–88.PubMedCrossRefGoogle Scholar
  37. 37.
    Agrawal, R. K., and Sharma, M. R. (2012) Curr. Opin. Struct. Biol., 22, 797–803.PubMedCrossRefGoogle Scholar
  38. 38.
    Smirnov, A., Entelis, N., Martin, R. P., and Tarassov, I. (2011) Genes Dev., 25, 1289–1305.PubMedCrossRefGoogle Scholar
  39. 39.
    Entelis, N. S., Kolesnikova, O. A., Dogan, S., Martin, R. P., and Tarassov, I. A. (2001) J. Biol. Chem., 276, 45642–45653.PubMedCrossRefGoogle Scholar
  40. 40.
    Agrawal, R. K., Sharma, M. R., Yassin, A., Lahiri, I., and Spremulli, L. L. (2011) Structure and Function of Organellar Ribosomes as Revealed by Cryo-EM, Springer, Wien-New York.Google Scholar
  41. 41.
    Gruschke, S., and Ott, M. (2010) Bioessays, 32, 1050–1057.PubMedCrossRefGoogle Scholar
  42. 42.
    Sharma, M. R., Booth, T. M., Simpson, L., Maslov, D. A., and Agrawal, R. K. (2009) Proc. Natl. Acad. Sci. USA, 106, 9637–9642.PubMedCrossRefGoogle Scholar
  43. 43.
    Watson, K. (1972) J. Cell Biol., 55, 721–726.PubMedCrossRefGoogle Scholar
  44. 44.
    Fiori, A., Mason, T. L., and Fox, T. D. (2003) Eukaryot. Cell, 2, 651–653.PubMedCrossRefGoogle Scholar
  45. 45.
    Szyrach, G., Ott, M., Bonnefoy, N., Neupert, W., and Herrmann, J. M. (2003) EMBO J., 22, 6448–6457.PubMedCrossRefGoogle Scholar
  46. 46.
    Jia, L., Dienhart, M., Schramp, M., McCauley, M., Hell, K., and Stuart, R. A. (2003) EMBO J., 22, 6438–6447.PubMedCrossRefGoogle Scholar
  47. 47.
    Ott, M., Prestele, M., Bauerschmitt, H., Funes, S., Bonnefoy, N., and Herrmann, J. M. (2006) EMBO J., 25, 1603–1610.PubMedCrossRefGoogle Scholar
  48. 48.
    Bauerschmitt, H., Mick, D. U., Deckers, M., Vollmer, C., Funes, S., Kehrein, K., Ott, M., Rehling, P., and Herrmann, J. M. (2010) Mol. Biol. Cell, 21, 1937–1944.PubMedCrossRefGoogle Scholar
  49. 49.
    Frazier, A. E., Taylor, R. D., Mick, D. U., Warscheid, B., Stoepel, N., Meyer, H. E., Ryan, M. T., Guiard, B., and Rehling, P. (2006) J. Cell Biol., 172, 553–564.PubMedCrossRefGoogle Scholar
  50. 50.
    Surovtseva, Y. V., Shutt, T. E., Cotney, J., Cimen, H., Chen, S. Y., Koc, E. C., and Shadel, G. S. (2011) Proc. Natl. Acad. Sci. USA, 108, 17921–17926.PubMedCrossRefGoogle Scholar
  51. 51.
    Surovtseva, Y. V., and Shadel, G. S. (2013) Nucleic Acids Res., 41, 2479–2488.PubMedCrossRefGoogle Scholar
  52. 52.
    Atkinson, G. C., Kuzmenko, A., Kamenski, P., Vysokikh, M. Y., Lakunina, V., Tankov, S., Smirnova, E., Soosaar, A., Tenson, T., and Hauryliuk, V. (2012) Nucleic Acids Res., 40, 6122–6134.PubMedCrossRefGoogle Scholar
  53. 53.
    Spremulli, L. L., Coursey, A., Navratil, T., and Hunter, S. E. (2004) Prog. Nucleic Acid Res. Mol. Biol., 77, 211–261.PubMedCrossRefGoogle Scholar
  54. 54.
    Christian, B. E., and Spremulli, L. L. (2010) J. Biol. Chem., 285, 28379–28386.PubMedCrossRefGoogle Scholar
  55. 55.
    Bhargava, K., and Spremulli, L. L. (2005) Nucleic Acids Res., 33, 7011–7018.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee, C., Tibbetts, A. S., Kramer, G., and Appling, D. R. (2009) J. Biol. Chem., 284, 34116–34125.PubMedCrossRefGoogle Scholar
  57. 57.
    Ellis, T. P., Helfenbein, K. G., Tzagoloff, A., and Dieckmann, C. L. (2004) J. Biol. Chem., 279, 15728–15733.PubMedCrossRefGoogle Scholar
  58. 58.
    Spencer, A. C., and Spremulli, L. L. (2004) Nucleic Acids Res., 32, 5464–5470.PubMedCrossRefGoogle Scholar
  59. 59.
    Towpik, J. (2005) Cell Mol. Biol. Lett., 10, 571–594.PubMedGoogle Scholar
  60. 60.
    Herrmann, J. M., Woellhaf, M. W., and Bonnefoy, N. (2013) Biochim. Biophys. Acta, 1833, 286–294.PubMedCrossRefGoogle Scholar
  61. 61.
    Yassin, A. S., Haque, M. E., Datta, P. P., Elmore, K., Banavali, N. K., Spremulli, L. L., and Agrawal, R. K. (2011) Proc. Natl. Acad. Sci. USA, 108, 3918–3923.PubMedCrossRefGoogle Scholar
  62. 62.
    Gaur, R., Grasso, D., Datta, P. P., Krishna, P. D., Das, G., Spencer, A., Agrawal, R. K., Spremulli, L., and Varshney, U. (2008) Mol. Cell, 29, 180–190.PubMedCrossRefGoogle Scholar
  63. 63.
    Laalami, S., Sacerdot, C., Vachon, G., Mortensen, K., Sperling-Petersen, H. U., Cenatiempo, Y., and Grunberg-Manago, M. (1991) Biochimie, 73, 1557–1566.PubMedCrossRefGoogle Scholar
  64. 64.
    Spencer, A. C., and Spremulli, L. L. (2005) Biochim. Biophys. Acta, 1750, 69–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Koc, E. C., and Spremulli, L. L. (2002) J. Biol. Chem., 277, 35541–35549.PubMedCrossRefGoogle Scholar
  66. 66.
    Christian, B. E., and Spremulli, L. L. (2009) Biochemistry, 48, 3269–3278.PubMedCrossRefGoogle Scholar
  67. 67.
    Hua, Y., and Raleigh, D. P. (1998) J. Mol. Biol., 278, 871–878.PubMedCrossRefGoogle Scholar
  68. 68.
    Haque, M. E., Grasso, D., and Spremulli, L. L. (2008) Nucleic Acids Res., 36, 589–597.PubMedCrossRefGoogle Scholar
  69. 69.
    Haque, M. E., Koc, H., Cimen, H., Koc, E. C., and Spremulli, L. L. (2011) Biochim. Biophys. Acta, 1814, 1779–1784.PubMedCrossRefGoogle Scholar
  70. 70.
    Smits, P., Smeitink, J., and van den Heuvel, L. (2010) J. Biomed. Biotechnol., 2010, 737385.PubMedCrossRefGoogle Scholar
  71. 71.
    Schwartzbach, C. J., and Spremulli, L. L. (1989) J. Biol. Chem., 264, 19125–19131.PubMedGoogle Scholar
  72. 72.
    Cai, Y. C., Bullard, J. M., Thompson, N. L., and Spremulli, L. L. (2000) Protein Sci., 9, 1791–1800.PubMedGoogle Scholar
  73. 73.
    Woriax, V. L., Bullard, J. M., Ma, L., Yokogawa, T., and Spremulli, L. L. (1997) Biochim. Biophys. Acta, 1352, 91–101.PubMedCrossRefGoogle Scholar
  74. 74.
    Woriax, V. L., Burkhart, W., and Spremulli, L. L. (1995) Biochim. Biophys. Acta, 1264, 347–356.PubMedCrossRefGoogle Scholar
  75. 75.
    Andersen, G. R., Thirup, S., Spremulli, L. L., and Nyborg, J. (2000) J. Mol. Biol., 297, 421–436.PubMedCrossRefGoogle Scholar
  76. 76.
    Hunter, S. E., and Spremulli, L. L. (2004) Mitochondrion, 4, 21–29.PubMedCrossRefGoogle Scholar
  77. 77.
    Bullard, J. M., Cai, Y. C., Zhang, Y., and Spremulli, L. L. (1999) Biochim. Biophys. Acta, 1446, 102–114.PubMedCrossRefGoogle Scholar
  78. 78.
    Piepenburg, O., Pape, T., Pleiss, J. A., Wintermeyer, W., Uhlenbeck, O. C., and Rodnina, M. V. (2000) Biochemistry, 39, 1734–1738.PubMedCrossRefGoogle Scholar
  79. 79.
    Suzuki, H., Ueda, T., Taguchi, H., and Takeuchi, N. (2007) J. Biol. Chem., 282, 4076–4084.PubMedCrossRefGoogle Scholar
  80. 80.
    Kawashima, T., Berthet-Colominas, C., Wulff, M., Cusack, S., and Leberman, R. (1996) Nature, 379, 511–518.PubMedCrossRefGoogle Scholar
  81. 81.
    Jeppesen, M. G., Navratil, T., Spremulli, L. L., and Nyborg, J. (2005) J. Biol. Chem., 280, 5071–5081.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang, Y., Li, X., and Spremulli, L. L. (1996) FEBS Lett., 391, 330–332.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang, Y., Sun, V., and Spremulli, L. L. (1997) J. Biol. Chem., 272, 21956–21963.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang, Y., and Spremulli, L. L. (1998) J. Biol. Chem., 273, 28142–28148.PubMedCrossRefGoogle Scholar
  85. 85.
    Rosenthal, L. P., and Bodley, J. W. (1987) J. Biol. Chem., 262, 10955–10959.PubMedGoogle Scholar
  86. 86.
    Chiron, S., Suleau, A., and Bonnefoy, N. (2005) Genetics, 169, 1891–1901.PubMedCrossRefGoogle Scholar
  87. 87.
    Hammarsund, M., Wilson, W., Corcoran, M., Merup, M., Einhorn, S., Grander, D., and Sangfelt, O. (2001) Hum. Genet., 109, 542–550.PubMedCrossRefGoogle Scholar
  88. 88.
    Tsuboi, M., Morita, H., Nozaki, Y., Akama, K., Ueda, T., Ito, K., Nierhaus, K. H., and Takeuchi, N. (2009) Mol. Cell, 35, 502–510.PubMedCrossRefGoogle Scholar
  89. 89.
    Terasaki, M., Suzuki, T., Hanada, T., and Watanabe, K. (2004) J. Mol. Biol., 336, 331–342.PubMedCrossRefGoogle Scholar
  90. 90.
    Chung, H. K., and Spremulli, L. L. (1990) J. Biol. Chem., 265, 21000–21004.PubMedGoogle Scholar
  91. 91.
    Al-Karadaghi, S., Aevarsson, A., Garber, M., Zheltonosova, J., and Liljas, A. (1996) Structure, 4, 555–565.PubMedCrossRefGoogle Scholar
  92. 92.
    Chrzanowska-Lightowlers, Z. M., Pajak, A., and Lightowlers, R. N. (2011) J. Biol. Chem., 286, 34479–34485.PubMedCrossRefGoogle Scholar
  93. 93.
    Richter, R., Pajak, A., Dennerlein, S., Rozanska, A., Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2010) Biochem. Soc. Trans., 38, 1523–1526.PubMedCrossRefGoogle Scholar
  94. 94.
    Temperley, R., Richter, R., Dennerlein, S., Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2010) Science, 327, 301.PubMedCrossRefGoogle Scholar
  95. 95.
    Loh, P. G., and Song, H. (2010) Curr. Opin. Struct. Biol., 20, 98–103.PubMedCrossRefGoogle Scholar
  96. 96.
    Dontsova, M., Frolova, L., Vassilieva, J., Piendl, W., Kisselev, L., and Garber, M. (2000) FEBS Lett., 472, 213–216.PubMedCrossRefGoogle Scholar
  97. 97.
    Ito, K., Frolova, L., Seit-Nebi, A., Karamyshev, A., Kisselev, L., and Nakamura, Y. (2002) Proc. Natl. Acad. Sci. USA, 99, 8494–8499.PubMedCrossRefGoogle Scholar
  98. 98.
    Soleimanpour-Lichaei, H. R., Kuhl, I., Gaisne, M., Passos, J. F., Wydro, M., Rorbach, J., Temperley, R., Bonnefoy, N., Tate, W., Lightowlers, R., and Chrzanowska-Lightowlers, Z. (2007) Mol. Cell, 27, 745–757.PubMedCrossRefGoogle Scholar
  99. 99.
    Trobro, S., and Aqvist, J. (2009) Biochemistry, 48, 11296–11303.PubMedCrossRefGoogle Scholar
  100. 100.
    Laurberg, M., Asahara, H., Korostelev, A., Zhu, J., Trakhanov, S., and Noller, H. F. (2008) Nature, 454, 852–857.PubMedCrossRefGoogle Scholar
  101. 101.
    Richter, R., Rorbach, J., Pajak, A., Smith, P. M., Wessels, H. J., Huynen, M. A., Smeitink, J. A., Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2010) EMBO J., 29, 1116–1125.PubMedCrossRefGoogle Scholar
  102. 102.
    Antonicka, H., Ostergaard, E., Sasarman, F., Weraarpachai, W., Wibrand, F., Pedersen, A. M., Rodenburg, R. J., van der Knaap, M. S., Smeitink, J. A., Chrzanowska-Lightowlers, Z. M., and Shoubridge, E. A. (2010) Am. J. Hum. Genet., 87, 115–122.PubMedCrossRefGoogle Scholar
  103. 103.
    Haque, M. E., and Spremulli, L. L. (2010) EMBO J., 29, 1019–1020.PubMedCrossRefGoogle Scholar
  104. 104.
    Atkinson, G. C., and Baldauf, S. L. (2011) Mol. Biol. Evol., 28, 1281–1292.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Kuzmenko
    • 1
    • 2
  • S. A. Levitskii
    • 1
  • E. N. Vinogradova
    • 1
  • G. C. Atkinson
    • 2
  • V. Hauryliuk
    • 2
  • N. Zenkin
    • 3
  • P. A. Kamenski
    • 1
    Email author
  1. 1.Department of Molecular Biology, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of TechnologyUniversity of TartuTartuEstonia
  3. 3.Centre for Bacterial Cell Biology, Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations