Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 5, pp 549–559 | Cite as

Decrease in pool of T lymphocytes with surface phenotypes of effector and central memory cells under Influence of TCR transgenic β-chain expression

  • Yu. Yu. Silaeva
  • A. A. Kalinina
  • M. S. Vagida
  • L. M. Khromykh
  • A. V. Deikin
  • T. G. Ermolkevich
  • E. R. Sadchikova
  • I. L. Goldman
  • D. B. KazanskyEmail author
Article

Abstract

Peripheral T lymphocytes can be subdivided into naive and antigen-experienced T cells. The latter, in turn, are represented by effector and central memory cells that are identified by different profiles of activation markers expression, such as CD44 and CD62L in mice. These markers determine different traffic of T lymphocytes in the organism, but hardly reproduce real antigenic experience of a T lymphocyte. Mechanisms of homeostasis maintenance of T lymphocytes with different activation phenotypes remain largely unknown. To investigate impact of T cell receptor (TCR) transgenic chains on formation of T lymphocytes, their peripheral survival and activation surface phenotypes, we have generated the transgenic mouse strain expressing transgenic β-chain of TCR 1D1 (belonging to the Vβ6 family) on the genetic background B10.D2(R101). Intrathymic development of T cells in these transgenic mice is not impaired. The repertoire of peripheral T lymphocytes in these mice contains 70–80% of T cells expressing transgenic β-chain and 20–30% of T cells expressing endogenous β-chains. The ratio of peripheral CD4+CD8 and CD4CD8+ T lymphocytes remained unchanged in the transgenic animals, but the percent of T lymphocytes with the “naive” phenotype CD44CD62L+ was significantly increased, whereas the levels of effector memory CD44+CD62L and central memory CD44+CD62L+ T lymphocytes were markedly decreased in both subpopulations. On the contrary, T lymphocytes expressing endogenous β-chains had surface phenotype of activated T cells CD44+. Thus, for the first time we have shown that the pool of T lymphocytes with different activation phenotypes depends on the structure of T cell receptors.

Key words

T cell receptor transgenic animals lymphocyte effector memory cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vazquez-Cintron, E. J., Monu, N. R., Burns, J. C., Blum, R., Chen, G., Lopez, P., Ma, J., Radoja, S., and Frey, A. B. (2012) PLoS One, 7, e36101.PubMedCrossRefGoogle Scholar
  2. 2.
    Ophir, E., Eidelstein, Y., Afik, R., Bachar-Lustig, E., and Reisner, Y. (2010) Blood, 115, 2095–2104.PubMedCrossRefGoogle Scholar
  3. 3.
    Akue, A. D., Lee, J.-Y., and Jameson, S. C. (2012) J. Immunol., 188, 2516–2523.PubMedCrossRefGoogle Scholar
  4. 4.
    Haluszczak, C., Akue, A. D., Hamilton, S. E., Johnson Lisa, D. S., Pujanauski, L., Teodorovic, L., Jameson, S. C., and Kedl, R. M. (2009) J. Exp. Med., 206, 435–448.PubMedCrossRefGoogle Scholar
  5. 5.
    Goldrath, A. W., Bogatzki, L. Y., and Bevan, M. J. (2000) J. Exp. Med., 192, 557–564.PubMedCrossRefGoogle Scholar
  6. 6.
    Cho, B. K., Rao, V. P., Ge, Q., Eisen, H. N., and Chen, J. (2000) J. Exp. Med., 192, 549–556.PubMedCrossRefGoogle Scholar
  7. 7.
    Moxham, V. F., Karegli, J., Phillips, R. E., Brown, K. L., Tapmeier, T. T., Hangartner, R., Sacks, S. H., and Wong, W. (2008) J. Immunol., 180, 3910–3918.PubMedGoogle Scholar
  8. 8.
    Voehringer, D., Liang, H. E., and Locksley, R. M. (2008) J. Immunol., 180, 4742–4753.PubMedGoogle Scholar
  9. 9.
    Kirberg, J., Berns, A., and von Boehmer, H. (1997) J. Exp. Med., 186, 1269–1275.PubMedCrossRefGoogle Scholar
  10. 10.
    Savage, P. A., Boniface, J. J., and Davis, M. M. (1999) Immunity, 10, 485–492.PubMedCrossRefGoogle Scholar
  11. 11.
    Milner, J. D., Fasth, A., and Etzioni, A. (2008) J. Clin. Immunol., Suppl. 1, 29–33; doi: 10.1007/s10875-007-9159-y.Google Scholar
  12. 12.
    Le Campion, A., Gagnerault, M. C., Auffray, C., Becourt, C., Poitrasson-Riviere, M., Lallemand, E., Bienvenu, B., Martin, B., Lepault, F., and Lucas, B. (2009) Blood, 114, 1784–1793.PubMedCrossRefGoogle Scholar
  13. 13.
    Kazansky, D. B., Petrishchev, V. N., Shtil’, A. A., Chernysheva, A. D., Sernova, N. V., Abronina, I. F., Pobezinskii, L. A., and Agafonova, E. L. (1999) Russ. J. Bioorg. Chem., 25, 99–109.Google Scholar
  14. 14.
    Kazansky, D. B., Chernysheva, A. D., Sernova, A. D., Petrishchev, V. N., Pobezinskii, L. A., Agafonova, E. L., and Chervonskii, A. V. (1998) Mol. Biol. (Moscow), 32, 574–583.Google Scholar
  15. 15.
    Grinenko, T. S., Pobezinskaya, E. L., Pobezinskii, L. A., Baturina, I. A., Zvezdova, E. S., and Kazansky, D. B. (2005) Byul. Eksp. Biol. Med., 140, 545–549.CrossRefGoogle Scholar
  16. 17.
    Zvezdova, E. C., Silaeva, Y. Y., Vagifa, M. S., Maryukhnich, E. V., Deikin, A. V., Ermolkevich, T. G., Kadulin, S. G., Sadchikova, E. R., Gol’dman, I. L., and Kazansky, D. B. (2010) Mol. Biol. (Moscow), 44, 277–286.CrossRefGoogle Scholar
  17. 18.
    Zhumabekov, T., Corbella, P., Tolaini, M., and Kioussis, D. (1995) J. Immunol. Meth., 185, 133–140.CrossRefGoogle Scholar
  18. 19.
    Brinster, R. L., Chen, H. Y., Trumbauer, M. E., Yagle, M. K., and Palmiter, R. D. (1985) Proc. Natl. Acad. Sci. USA, 82, 4438–4442.PubMedCrossRefGoogle Scholar
  19. 20.
    Erbach, G. T., Lawitts, J. A., Papaioannou, V. E., and Biggers, J. D. (1994) Biol. Reprod., 50, 1027–1033.PubMedCrossRefGoogle Scholar
  20. 21.
    Auerbach, A. B. (2004) Acta Biochim. Pol., 51, 9–31.PubMedGoogle Scholar
  21. 22.
    Gui, M., Li, J., Wen, L. J., Hardy, R. R., and Hayakawa, K. (2001) J. Immunol., 167, 6239–6246.PubMedGoogle Scholar
  22. 23.
    Biro, J., Wurch, A., Potocnik, A. J., Falk, I., Mossmann, H., and Eichmann, K. (1999) Proc. Natl. Acad. Sci. USA, 96, 3882–3887.PubMedCrossRefGoogle Scholar
  23. 24.
    Egawa, T., Kreslavsky, T., Littman, D. R., and von Boehmer, H. (2008) PLoS One, 3, e1512.PubMedCrossRefGoogle Scholar
  24. 25.
    Dave, V. P., Cao, Z., Browne, C., Alarcon, B., Fernandez-Miguel, G., Lafaille, J., de la Hera, A., Tonegawa, S., and Kappes, D. J. (1997) EMBO J., 16, 1360–1370.PubMedCrossRefGoogle Scholar
  25. 26.
    Zvezdova, E. S., Grinenko, T. S., Pobezinskaya, E. L., Pobezinsky, L. A., and Kazansky, D. B. (2008) Mol. Biol. (Moscow), 42, 588–597.CrossRefGoogle Scholar
  26. 27.
    Laouar, A. (2008) PLoS ONE, 3, e4089.PubMedCrossRefGoogle Scholar
  27. 28.
    Listman, J. A., Rimm, I. J., Wang, Y., Geller, M. C., Tang, J. C., Ho, S., Finn, P. W., and Perkins, D. L. (1996) Cell Immunol., 167, 44–55.PubMedCrossRefGoogle Scholar
  28. 29.
    Perkins, D. L., Listman, J. A., Marshak-Rothstein, A., Kozlow, W., Kelley, V. R., Finn, P. W., and Rimm, I. J. (1996) J. Immunol., 156, 4961–4968.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Yu. Yu. Silaeva
    • 1
  • A. A. Kalinina
    • 1
  • M. S. Vagida
    • 1
  • L. M. Khromykh
    • 1
  • A. V. Deikin
    • 2
  • T. G. Ermolkevich
    • 2
  • E. R. Sadchikova
    • 2
  • I. L. Goldman
    • 2
  • D. B. Kazansky
    • 1
    Email author
  1. 1.Blokhin Cancer Research CenterRussian Academy of Medical SciencesMoscowRussia
  2. 2.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations