Skip to main content
Log in

Proteins of the human 40S ribosomal subunit involved in hepatitis C IRES Binding as revealed from fluorescent labeling

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Initiation of translation of genomic RNA (gRNA) of hepatitis C virus (HCV) is provided by a highly structured fragment in its 5′-untranslated region, the so-called Internal Ribosome Entry Site (IRES). In this work, the exposed NH2-groups of proteins in the 40S subunit of the human ribosome and in its binary complexes with RNA transcripts corresponding to the full-size HCV IRES or its fragments were probed using the N-hydroxysuccinimide derivative of the fluorescent dye Cy3. Comparison of efficiencies of modification of ribosomal proteins in free subunits and in their binary complexes with the RNA transcripts revealed ribosomal proteins involved in the HCV IRES binding. It was found that binding of the 40S subunits with the RNA transcript corresponding to full-size HCV IRES results in a decrease in modification levels of ribosomal protein (rp) S27 and, to a lesser extent of rpS10; also, a noticeable decrease in the efficiency of labeling of proteins RACK1/S2/S3a was observed. When a fragment of HCV IRES containing the initial part of the open reading frame (ORF) of the viral gRNA was deleted, the level of rpS10 modification became the same as in free subunits, whereas the levels of modification of rpS27 and the RACK1/S2/S3a group remained virtually unchanged compared to those observed in the complex of 40S subunit with the full-size HCV IRES. Binding of 40S subunits to a fragment of the HCV IRES lacking an ORF and domain II increased the modification level of the RACK1/S2/S3a proteins, while the efficiencies of labeling of rpS10 and rpS27 remained the same as upon the deletion of the ORF fragment. Comparison of these results with known structural and biochemical data on the organization of 40S subunit and the location of the HCV IRES on it revealed structural elements of the IRES contacting exposed lysine residues of the above-mentioned ribosomal proteins. Thus, it was found that the majority of exposed lysine residues of rpS27 are involved in the binding of the HCV IRES region formed by the junction of subdomains IIIa, IIIb, and IIIc with the central stalk of domain III, and that several lysine residues of rpS10 participate in the binding of the HCV IRES region corresponding to the initial part of the ORF of the viral gRNA. In addition, we concluded that lysine residues of rpS3a are involved in the binding of domains II and III of HCV IRES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cryo-EM:

cryoelectron microscopy

HCV:

hepatitis C virus

IRES:

internal ribosome entry site

NHS-Cy3:

1,1′-(3-dihydroxypropyl)-3,3,3′,3′-tetramethylindocarbocyanine N-hydroxysuccinimide ester

ORF:

open reading frame

rp:

ribosomal protein

5′-UTR:

5′-untranslated region

References

  1. Jackson, R. J., Hellen, C. U., and Pestova, T. V. (2010) Nat. Rev. Mol. Cell. Biol., 11, 113–127.

    Article  PubMed  CAS  Google Scholar 

  2. Merrick, W. C. (2004) Gene, 332, 1–11.

    Article  PubMed  CAS  Google Scholar 

  3. Rijnbrand, R., Bredenbeek, P., van der Straaten, T., Whetter, L., Inchauspe, G., Lemon, S., and Spaan, W. (1995) FEBS Lett., 365, 115–119.

    Article  PubMed  CAS  Google Scholar 

  4. Reynolds, J. E., Kaminski, A., Kettinen, H. J., Grace, K., Clarke, B. E., Carroll, A. R., Rowlands, D. J., and Jackson, R. J. (1995) EMBO J., 14, 6010–6020.

    PubMed  CAS  Google Scholar 

  5. Honda, M., Beard, M. R., Ping, L. H., and Lemon, S. M. (1999) J. Virol., 73, 1165–1174.

    PubMed  CAS  Google Scholar 

  6. Brocard, M., Paulous, S., Komarova, A. V., Deveaux, V., and Kean, K. M. (2007) Virus Genes, 35, 5–15.

    Article  PubMed  CAS  Google Scholar 

  7. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J., and Hellen, C. U. (1998) Genes Dev., 12, 67–83.

    Article  PubMed  CAS  Google Scholar 

  8. Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J. D., and Stark, H. (2005) Structure, 13, 1695–1706.

    Article  PubMed  CAS  Google Scholar 

  9. Spahn, C. M., Kieft, J. S., Grassucci, R. A., Penczek, P. A., Zhou, K., Doudna, J. A., and Frank, J. (2001) Science, 291, 1959–1962.

    Article  PubMed  CAS  Google Scholar 

  10. Fukushi, S., Okada, M., Stahl, J., Kageyama, T., Hoshino, F. B., and Katayama, K. (2001) J. Biol. Chem., 276, 20824–20826.

    Article  PubMed  CAS  Google Scholar 

  11. Otto, G. A., Lukavsky, P. J., Lancaster, A. M., Sarnow, P., and Puglisi, J. D. (2002) RNA, 8, 913–923.

    Article  PubMed  CAS  Google Scholar 

  12. Babaylova, E., Graifer, D., Malygin, A., Stahl, J., Shatsky, I., and Karpova, G. (2009) Nucleic Acids Res., 37, 1141–1151.

    Article  PubMed  CAS  Google Scholar 

  13. Laletina, E., Graifer, D., Malygin, A., Ivanov, A., Shatsky, I., and Karpova, G. (2006) Nucleic Acids Res., 34, 2027–2036.

    Article  PubMed  CAS  Google Scholar 

  14. Malygin, A. A., Graifer, D. M., Laletina, E. S., Shatsky, I. N., and Karpova, G. G. (2003) Mol. Biol. (Moscow), 37, 1027–1034.

    Article  CAS  Google Scholar 

  15. Matasova, N. B., Myltseva, S. V., Zenkova, M. A., Graifer, D. M., Vladimirov, S. N., and Karpova, G. G. (1991) Anal. Biochem., 198, 219–223.

    Article  PubMed  CAS  Google Scholar 

  16. Ilin, A. A., Malygin, A. A., and Karpova, G. G. (2011) Biochim. Biophys. Acta, 1814, 505–512.

    Article  PubMed  CAS  Google Scholar 

  17. Vladimirov, S. N., Ivanov, A. V., Karpova, G. G., Musolyamov, A. K., Egorov, T. A., Thiede, B., Wittmann-Liebold, B., and Otto, A. (1996) Eur. J. Biochem., 239, 144–149.

    Article  PubMed  CAS  Google Scholar 

  18. Kieft, J. S., Zhou, K., Jubin, R., and Doudna, J. A. (2001) RNA, 7, 194–206.

    Article  PubMed  CAS  Google Scholar 

  19. Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., and Yusupov, M. (2011) Science, 334, 1524–1529.

    Article  PubMed  CAS  Google Scholar 

  20. Malygin, A. A., Shaulo, D. D., and Karpova, G. G. (2000) Biochim. Biophys. Acta, 1494, 213–216.

    Article  PubMed  CAS  Google Scholar 

  21. Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A., and Ban, N. (2011) Science, 331, 730–736.

    Article  PubMed  CAS  Google Scholar 

  22. Razin, S. V., Borunova, V. V., Maksimenko, O. V., and Kantidze, O. L. (2012) Biochemistry (Moscow), 77, 217–226.

    Article  CAS  Google Scholar 

  23. Graifer, D., Molotkov, M., Styazhkina, V., Demeshkina, N., Bulygin, K., Eremina, A., Ivanov, A., Laletina, E., Ven’yaminova, A., and Karpova, G. (2004) Nucleic Acids Res., 32, 3282–3293.

    Article  PubMed  CAS  Google Scholar 

  24. Pisarev, A. V., Kolupaeva, V. G., Yusupov, M. M., Hellen, C. U., and Pestova, T. V. (2008) EMBO J., 27, 1609–1621.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao, W. D., and Wimmer, E. (2001) J. Virol., 75, 3719–3730.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Karpova.

Additional information

Published in Russian in Biokhimiya, 2013, Vol. 78, No. 1, pp. 73–81. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM12-222, December 9, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malygin, A.A., Shatsky, I.N. & Karpova, G.G. Proteins of the human 40S ribosomal subunit involved in hepatitis C IRES Binding as revealed from fluorescent labeling. Biochemistry Moscow 78, 53–59 (2013). https://doi.org/10.1134/S0006297913010069

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913010069

Key words

Navigation